期刊文献+

基于SIMULINK平台的渡槽结构隔震研究 被引量:2

Seismic analysis of isolated aqueduct structure based on SIMULINK
下载PDF
导出
摘要 【目的】建立基于SIMULINK平台的大型渡槽结构隔震的分析方法,以弥补目前大型渡槽结构隔震控制计算中存在的求解过程复杂等不足。【方法】基于MATLAB/SIMULINK仿真平台,建立了大型渡槽结构隔震分析的有限元动力计算模型,在模型中编制了动力仿真模块,利用铅芯橡胶支座对其进行减震控制。【结果】建立的大型渡槽结构隔震分析有限元动力仿真模型的运行过程简洁,模块移植性强,运算结果可靠,设置铅芯橡胶支座能够有效地抑制渡槽结构的地震响应。【结论】基于SIMULINK平台建立的隔震渡槽结构能有效地减震,这对大型渡槽结构的隔震响应分析具有一定的参考价值。 [Objective] The isolation analysis method of large aqueduct structure was established based on the SIMULINK to compensate for the complicated process of the large aqueduct structure vibration iso- lation calculation. [Method] The finite element model of isolated aqueduct was established based on the MATLAB/SIMULINK platform. A dynamic program was designed, and the lead rubber bearing was used to control the seismic response. [Result] The isolation of large aqueduct structure finite element dynamic emulational model was simple, precise, and facile, with intuitional and believable results. Setting LRB can efficiently reduce the aqueduct responses to earthquake. [Conclution] The built aqueduct structure can effi- ciently reduce seismic destruction. Results of the present study may serve as a base for seismic analysis of large-scale aqueducts.
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2013年第1期221-228,共8页 Journal of Northwest A&F University(Natural Science Edition)
基金 河南省自然科学基础研究计划项目(82300440070)
关键词 渡槽 隔震 铅芯橡胶支座 SIMULINK aqueduct isolation lead rubber bearing SIMULINK
  • 相关文献

参考文献11

二级参考文献46

  • 1孙伟,胡海岩.基于多级磁流变阻尼器的操纵面振动半主动抑制——数值仿真与风洞试验[J].振动工程学报,2005,18(1):14-18. 被引量:2
  • 2国家标准《中国地震动参数区划图》发布实施[J].城市与减灾,2001(4):4-4. 被引量:2
  • 3邬喆华,楼文娟,陈勇,倪一清,高赞明.MR阻尼器对斜拉索减振控制的数值仿真[J].中国公路学报,2006,19(1):62-66. 被引量:10
  • 4周锡元.建筑结构抗震设防策略的发展[J].工程抗震,1997(1):1-3. 被引量:14
  • 5Spencer Jr B F, Nagarajaiah S. State of the Art of Structural Control [ J ]. Journal of Structural Engineering, ASCE, 2003,129 (7) : 845 - 856.
  • 6Yi F, Dyke S J, French S, et al. Investigation of magnetorheological damper for earthquake hazard mitigation [ C ]. Proceeding of 2rid World Conference on Structural Control. Wiley, West Sussex, UK, 1998,349 - 358.
  • 7Dyke S J, Spencer Jr B F, Sain M K. Modeling and control of magnetorheological dampers for seismic response reduction [J]. Smart Materials and Structures, 1996, 5 (5) : 565 - 575.
  • 8Zhou L, Chang C C, Wang L X. Adaptive fuzzy control for nonlinear building-magnetorheological damper system [ J ]. Journal of Structural Engineering, ASCE, 2003,129 ( 7 ) : 905 -913.
  • 9Ahlawat A S, Ramaswamy A. Multiobjective optimal structural vibration control using fuzzy control system [ J]. Journal of Structural Engineering, ASCE, 2001, 127 (11): 1330 - 1337.
  • 10Symans M D, Kelly S W. Fuzzy logic control of bridge structures using intelligent semi-active isolation systems [ J ]. Earthquake Engineering and Structural Dynamics, 1999, 28 (1) : 37 -60.

共引文献324

同被引文献68

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部