期刊文献+

微创手术机器人的力/位解耦协同智能控制 被引量:2

Decoupled and Coordinated Intelligent Force-position Control for Minimally Invasive Surgical Robot
原文传递
导出
摘要 为解决目前市场上可利用的微创手术机器人都不包含重要的触觉(力)反馈机制的问题,根据人体内部双边解耦协同的生理调控机制,结合微创手术机器人的控制特性,开发了一种新颖的力/位解耦协同控制策略,并设计相应的智能控制系统.通过4个3自由度触觉操纵器装置,对提出的智能控制系统性能进行了真实的实验验证.实验结果表明,提出的控制系统能够实现力/位信号的解耦与协同控制.操作者能够获得准确的力反馈信号,确保机器人和谐、平稳地完成任务. In order to solve the problem that current commercially available minimally surgical robots do not include significant haptic(force) feedback mechanism,a novel decoupled and coordinated force-position control strategy with corresponding intelligent control system design is proposed based on bilateral decoupled and coordinated bio-regulation mechanism in human body,in which control features of minimally surgical robots are considered.Actual experiments are carried out with four 3-DOF(degree of freedom) haptic manipulators to illustrate the performance of the proposed intelligent controller system.The results indicate that the proposed control system can achieve decoupled and coordinated force-position control.The operator can get accurate force feedback to guarantee robot performing task harmoniously and stably.
出处 《机器人》 EI CSCD 北大核心 2013年第1期73-80,共8页 Robot
基金 国家自然科学基金重点资助项目(61134009) 国家自然科学基金资助项目(60975059 60775052) 国家ITER计划国内配套研究项目(2010GB108004) 教育部高等学校博士学科点专项科研基金资助项目(20090075110002) 上海市优秀学术带头人计划资助项目(11XD1400100) 上海领军人才专项资金资助项目 上海市科学技术委员会重点基础研究项目(11JC1400200 10JC1400200) 上海市科学技术委员会技术标准专项项目(10DZ0506500)
关键词 微创手术 达芬奇机器人 解耦控制 协同控制 位控制 模糊控制器 minimally invasive surgery da Vinci robot decoupled control coordinated control force-position control fuzzy controller
  • 相关文献

参考文献13

  • 1Kitagawa M,Dokko D,Okamura A M. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems[J].Journal of Thoracic and Cardiovascular Surgery,2005,(01):151-158.
  • 2Okamura A M. Methods for haptic feedback in teleoperated robot-assisted surgery[J].Industrial Robot,2004,(06):499-508.
  • 3Bethea B T,Okamura A M,Kitagawa M. Application of haptic feedback to robotic surgery[J].Journal of Laparoendoscopic and Advanced Surgical Techniques:A,2004,(03):191-195.
  • 4Tavakoli M,Patel R V,Moallem M. Haptic interaction in robotassisted endoscopic surgery:A sensorized end-effector[J].International Journal of MedicalRobotics and Computer Assisted Surgery,2005,(02):53-63.
  • 5Reiley C E,Akinbiyi T,Burschka D. Effects of visual force feedback on robot-assisted surgical task performance[J].Journal of Thoracic and Cardiovascular Surgery,2008,(01):196-202.
  • 6van der Meijden O A J,Schijven M P. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training:A current review[J].SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES,2009,(06):1180-1190.
  • 7Nuno E,Ortega R,Barabanov N. A globally stable PD controller for bilateral teleoperators[J].IEEE Transactions on Robotics,2008,(03):753-758.
  • 8Sirouspour S. Modeling and control of cooperative teleoperation systems[J].IEEE Transactions on Robotics,2005,(06):1220-1225.
  • 9Mitra S,Hayashi Y. Bioinformatics with soft computing[J].IEEE Transactions on Systems Man and Cybernetics:Part C,2006,(05):616-635.
  • 10Ding Y S,Liu B. An intelligent bi-cooperative decoupling control approach based on modulation mechanism of internal environment in body[J].IEEE Transactions on Control Systems Technology,2011,(03):692-698.

二级参考文献14

  • 1allel manipulators [ J ]. Mechanism and Machine Theory, 2003, 38(1) : 85-101.
  • 2YI Y, MCINROY J E, CHEN Y. Fault tolerance of parallel manipulators using task space and kinematic redundancy [J]. IEEE Transactions on Robotics, 2006, 22(5) : 1017- 1021.
  • 3NOTASH L. A methodology for actuator failure recovery in parallel manipulators [ J]. Mechanism and Machine Theory, 2011, 46(4): 454-465.
  • 4UKIDVE C S, MCINROY J E, JAFARI F. Using redun- dancy to optimize manipulability of stewart platforms [J]. IEEE/ASME Transactions on Meehatronics, 2008, 13 (4) : 475 -479.
  • 5SONG Q, YIN L. Robust adaptive fault accommodation for a robot system using a radial basis function neural network [J]. International Journal of Systems Science, 2001, 32 (2) : 195-204.
  • 6ZHANG K, JIANG B, STAROSWIECKI M. Dynamic out- put feedback fault tolerant controller design for Takagi-Suge- no fuzzy systems with actuator faults[ J]. IEEE Transactions on Fuzzy Systems, 2010, 18(1 ) : 194-201.
  • 7TINSOR, TERRA M H, BERGERMAN M. A fault toler- ance framework for cooperative robotic manipulators [ J ]. Control Engineering Practice, 2007, 15 (5) : 615-625.
  • 8TYURIN K V, KHANIN M A. Hemostasis as an optimal system [ J ]. Mathematical Biosciences, 2006, 204 (2) : 167-184.
  • 9ZHAO J, ZHANG K, YAO X. Study on fault tolerant workspace and fault tolerant planning algorithm based on optimal initial position for two spatial coordinating manipu- lators[ J]. Mechanism and Machine Theory, 2006, 41 (5) : 584-595.
  • 10ROBERTS R G, YU H G, MACIEJEWSKI A A. Funda- mental limitations on designing optimally fault-tolerant re- dundant manipulators[ J]. IEEE Transactions on Robotics, 2008, 24(5) : 1224-1237.

共引文献3

同被引文献21

  • 1李丙春.粒子群优化算法及其应用[J].喀什师范学院学报,2006,27(3):66-68. 被引量:2
  • 2Taylor R H. A perspective on medical robotics[J]. Proceedings of the IEEE, 2006, 94(9): 1652-1664.
  • 3Sun L W, Yeung C K. Port placement and pose selection of the da Vinci surgical system for collision-free intervention based on performance optimization[C]//IEEE/RSJ International Con- ference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2007: 1951-1956.
  • 4Trejos A L, Patel R V. Port placement for endoscopic cardiac.surgery based on robot dexterity optimization[C]//1EEE Inter- national Conference on Robotics and Automation. Piscataway, USA: IEEE, 2005: 912-917.
  • 5Cannon J W, Stoll J A, Selha S D, et al. Port placement planning in robot-assisted coronary artery bypass[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5): 912-917.
  • 6Wang Y F, Uecker D R, Wang Y L. A new framework for vision- enabled and robotically assisted minimally invasive surgcry[J]. Computerized Medical Imaging and Graphics, 1998, 22(6): 429-437.
  • 7Hayashibe M, Suzuki N, Hashizume M, et al, Robotic surgery setup simulation with the integration of inverse-kinematics computation and medical imaging[J]. Computer Methods and Programs in Biomedicine, 2006, 83( 1 ): 63-72.
  • 8Gosselin C, Angeles J. A global perlbrmance index for the kine- matic optimization of robotic manipulators[J]. Journal of Me- chanical Design, 1991, 113(3): 220-226.
  • 9Stocco L, Salcudean S E, Sassani F. Fast constrained global minimax optimization of robot parameters[J]. Robotica, 1998, 16(6): 595-605.
  • 10Lehmann G, Chiu A, Gobbi D, et al. Towards dynamic planning and guidance of minimally invasive robotic cardiac bypass sur- gical procedures[C]//4th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer-Verlag, 2001 : 368-375.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部