期刊文献+

一种支持向量机参数优化的GA-Powell算法 被引量:7

A GA-Powell Algorithm for Parameter Optimization of Support Vector Machine
下载PDF
导出
摘要 支持向量机的核心是核函数,选择合适的核函数参数是支持向量机理论研究的重点。文中将遗传算法与Powell算法相结合,提出了GA-Powell算法来优化核函数的参数。首先利用遗传算法找到一个初始最优解,再利用Powell算法在所得解附近进行寻优,反复迭代产生最优解。该算法在保留遗传算法较强的全局搜索能力的同时具有Powell算法的较强的局部搜索能力,使得混合算法具有更加精确和快速的收敛性。将该算法应用到银行基金项目的分类实验中取得了良好的结果。 Support vector machine (SVM) is the core of the kernel function, selecting the proper parameters of kernel function are the fo- cus of support vector machine theory research. Combined GA and Powell algorithm, the GA-Powell algorithm was proposed to search op- timal parameters. First, use the genetic algorithm to find a initial solution, and then use the Powell algorithm, eventually produce the opti- mal solution. This method retained the global search capability of GA algorithm and the good local convergence of Powell, with more ac- curate and faster convergence. The algorithm is applied to the practice of bank found project classification and has good result.
出处 《计算机技术与发展》 2013年第2期15-18,共4页 Computer Technology and Development
基金 贵阳市2010年工业科技攻关项目([2010]筑科工合同字第28号) 贵州大学2011年研究生创新基金资助项目(校研理工[2011039])
关键词 支持向量机 参数优化 遗传算法 POWELL算法 SVM parameter optimization GA Powell algorithm
  • 相关文献

参考文献12

  • 1白鹏;张喜斌;张斌.支持向量机理论及工程应用实例[M]{H}西安:西安电子科技大学出版社,2008.
  • 2Müller K R,Mika S,Ratsch G. An Introduction to Kernel Based Learning Algorithms[J].{H}IEEE Transactions on Neural Networks,2001,(02):181-202.
  • 3Keerth I S S. Efficient tuning of SVM hyper parameters using ra2 dius/margin bound and iterative algorithms[J].{H}IEEE Transactions on Neural Networks,2002,(05):1225-1229.
  • 4Chapelle O,Vapnik V,Bousqet O. Choosing multiple pa-rameters for support vector machines[J].{H}Machine Learning,2002,(1-3):131-159.
  • 5Avci E. Selecting of the optimal feature subset and kernel pa-rameters in digital modulation classification by using hybrid genetic algorithm support vector machines:HGASVM[J].Ex-pert Systems with Applications,2009,(02):1391-1402.
  • 6Huang C L,Wang C J. A GA-based feature selection and pa-rameters optimization for support vector machines[J].{H}Expert systems with application,2006,(02):231-240.
  • 7Hsu C W,Chang C C,Lin C J. A practical guide to support vector classification[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf,2003.
  • 8Fang Xiaoyu,Bai Tao. Share Price Prediction Using Wavelet Transform and Ant Colony Algorithm for Parameters Optimiza-tion in SVM[A].2009.288-292.
  • 9Moser G,Serpico S B. A Markovian generalization of support vector machines for contextual supervised classification of hy-perspectral images[A].2010.1-4.
  • 10计智伟,吴耿锋,胡珉.基于自适应遗传算法和SVM的特征选择[J].计算机工程,2009,35(14):200-202. 被引量:9

二级参考文献11

  • 1黄卫.加强技术风险管理,确保地铁工程建设安全[C]//2005地铁与地下工程技术风险管理研讨会.北京:[出版者不详],2005.
  • 2赵萤.支持向量机中高斯核函数的研究[D].上海:华东师范大学,2007.
  • 3Chapelle O. Training a Support Vector Machine in the Primal[J]. Neural Computation, 2007, 19(5): 1155-1178.
  • 4Lee Y J, Mangasarian O L. SSVM: A Smooth Support Vector Machine for Classification[J]. Computational Optimization and Applications, 2001, 22(1): 5-21.
  • 5Wang Lei, Jia Huading, Li Jie. Training Robust Support Vector Machine with Smooth Ramp Loss in the Primal Space[J]. Neurocomputing, 2008, 71(13-15): 3020-3025.
  • 6Chapelle O, Sindhwani V, Keerthi S S. Optimization Techniques for Semi-supervised Support Vector Machines[J]. Journal of Machine Learning Research, 2008, 9(1): 203-233.
  • 7Mangasarian O L, Wild E W. Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
  • 8Chang K W, Hsieh C J, Lin C J. Coordinate Descent Method for Large-scale L2-loss Linear Support Vector Machines[J]. Journal of Machine Learning Research, 2008, 9(7): 1369-1398.
  • 9Bazaraa M S, Shetty C. Nonlinear Programming: Theory and Algorithms[M]. New York, USA: John Wiley & Sons Inc., 2006.
  • 10Rao S S. Optimization Theory and Applications[M]. New York, USA: John Wiley & Sons Inc., 1984.

共引文献11

同被引文献90

  • 1沃焱,韩国强,张波.一种新的基于特征的图像内容认证方法[J].计算机学报,2005,28(1):105-112. 被引量:32
  • 2于鹏,顾冲时.大坝安全监测的组合预测模型[J].人民黄河,2006,28(1):67-68. 被引量:26
  • 3李登高,秦开怀.基于随机轮廓匹配的快速图像配准算法[J].清华大学学报(自然科学版),2006,46(1):111-114. 被引量:15
  • 4常青,刘强.基于支持向量机的税收预测模型的研究[J].计算机工程与设计,2007,28(7):1653-1654. 被引量:18
  • 5Wu Zhongru,Su Huaizhi. Dam Health Diagnosis and Evaluation[J]. Smart Materials & Structures,2005, 14(3) :130-136.
  • 6姜明辉,袁绪川.基于GA优化的个人信用评估SVM模型[C]//第26届中国控制会议论文集.北京:航空航天大学出版社,2007:731-735.
  • 7Srinivas M, Patnaik L M. Adaptive Probabilities of Cross- over and Mutations in Genetic AlgorithmEJ-. IEEE Trans.on System, Man and Cybernetics, 1994,24(4) : 656-667.
  • 8Vapnik V.The Nature of Statistical Learning Theory[M].Berlin,Germany:Springer-Verlag,1995.
  • 9Suykens J A,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 10Muller K,Mika S,Ratsch G,et al.An Introduction to Kernel-based Learning Algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.

引证文献7

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部