期刊文献+

基于主元分析和稀疏表示的SAR图像目标识别 被引量:13

Target recognition of SAR images using principal component analysis and sparse representation
下载PDF
导出
摘要 现有的合成孔径雷达图像目标识别方法通常包括图像预处理、特征提取和识别算法3部分。但是,预处理算法的自适应性很难得到保证。提出了一种基于主元分析和稀疏表示的目标识别算法。首先,阐述了稀疏表示和重构的基本理论;其次,提出了基于主元分析和稀疏表示的合成孔径雷达图像目标识别算法;最后,选取MSTAR数据库中的5类合成孔径雷达目标图像进行仿真。结果表明,在没有预处理的情况下,该算法仍能有效地识别目标,与主元分析和三阶近邻的识别算法相比,具有较高的识别率和鲁棒性。 With the existing target recognition algorithms of synthetic aperture radar (SAR) images, image preprocessing, feature extraction and recognition algorithm are usually carried out. The adaptability of the pre- processing algorithm is difficult to be guaranteed. A target recognition algorithm using principal component analysis (PCA) and sparse representation is proposed. Firstly, the basic theory of sparse representation and re construction is presented. Secondly, an SAR image target recognition algorithm is presented using PCA and sparse representation. Finally, an experiment with five kinds of SAR target images in the MSTAR database is given. The simulation results show that this algorithm can still recognize the target effectively without prepro- cessing. Compared with the PCA and the third-order nearest neighbor algorithm, the proposed algorithm has a higher recognition rate and robustness.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第2期282-286,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61203170) 航空科学基金(20110752005) 江苏省普通高校研究生科研创新计划(CXLX12_0160)资助课题
关键词 目标识别 稀疏表示 主元分析 合成孔径雷达图像 target recognition sparse representation principal component analysis (PCA) synthetic aper- ture radar (SAR) image
  • 相关文献

参考文献16

  • 1Candes E,Romberg J,Tao T. Robust uncertainty principles:exact signal reconstruction from highly imcomplete frequency in formation[J].IEEE Transactions on Information theory,2006,(02):489-509.doi:10.1109/TIT.2005.862083.
  • 2Candes E,Tao T. Near optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Transactions on Information theory,2006,(12):5406-5425.
  • 3Donoho D. Compressed sensing[J].fEEE Trans on fnforma tion Theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 4Starck J,Elad M,Donoho D. Imagedecomposit ion viathe combination of sparse representations and a variationalapproach[J].IEEE Transactions on Image Processing,2005,(10):1570-1582.doi:10.1109/TIP.2005.852206.
  • 5Patel V,Easley G,Healy D. Compressed sensing for synthetic aperture radar imaging[A].2009.2141-2144.
  • 6颜学颖,焦李成,王凌霞,万红林.一种提高SAR图像分割性能的新方法[J].电子与信息学报,2011,33(7):1700-1705. 被引量:10
  • 7Wright J,Yang A,Ganesh A. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(02):210-227.doi:10.1109/TPAMI.2008.79.
  • 8李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 9Li J,Wang J,Shen W. Movingobject detection in framework of compressive sampling[J].Journal of Systems Engineering and Electronics,2010,(05):740-745.doi:10.3969/j.issn.1004-4132.2010.05.004.
  • 10Thiagarajan J,Ramamurthy K,Knee P. Sparse representations for automatic target classification in SAR images[A].2010.

二级参考文献103

  • 1沈焕锋,李平湘,张良培.一种基于正则化技术的超分辨影像重建方法[J].中国图象图形学报(A辑),2005,10(4):436-440. 被引量:15
  • 2陈光盛,李树涛.MAP和POCS算法实现超分辨率图像的重建[J].科学技术与工程,2006,6(4):396-399. 被引量:8
  • 3Henri Maitre[法].合成孔径雷达图像处理.北京:电子工业出版社,2005
  • 4HUERTAS A, YANG C, MADISON R. Passive imaging based multi-cue hazard detection for spacecraft safe landing[C]//2006 IEEE Aerospace Conference. Big Sky, Montana: IEEEE Press, 2006(2): 1-14.
  • 5YANG C, JOHNSON A E, MATTHIES L H, OLSEN C F. Optical landmark detection for spacecraft navigation[C]//Proceeding of the 13th AAS/AIAA Space Flight Mechanics Meeting. Ponce, Puerto Rico: AIAA Press, 2003: 1785-1803.
  • 6BUE B D, STEPINSKI W F. Machine detection of martian impact craters from digital topography data[J]. IEEE Transaction on Geoscience and Remote Sensing, 2007, 45(1): 265-274.
  • 7MENDEZ A F. Crater marking and classification using computer vision[C]//Progress in Pattern Recognition, Speech and Image Analysis. Berlin: Springer, 2003: 79- 86.
  • 8VINOGRADOVA T, BURL M, MJOSNESS E. Training of a crater detection algorithm for Mars crater imagery[C]// 2002 IEEE Aerospace Conference, 2002, 7: 3201-3211.
  • 9WETZLER P G, HONDA R, ENKE B, MERLINE W J, CHAPMAN C R, BURL M C. Learning to detect small impact craters[C]//Proceeding of 7th IEEE-Workingshops on Application of Computer Vision and Workshops on Motion and Video Computing, 2005, 1: 178-184.
  • 10KIM J, MULLER J, VAN GASSELT S, MORLEY J, NEUKUM G. Automated crater detection, a new tool for Mars cartography and chronology[J]. Photogrammetric Engineering and Remote Sensing, 2005(71): 1205-1217.

共引文献232

同被引文献134

引证文献13

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部