摘要
以戴高乐航母为研究对象,基于不同优化算法,对其舰面舰载机布放问题的解决方法进行比较,以此作为解决其他类型航母同样问题的参考。首先,分析了解决舰载机舰面布放调度问题的先决条件,包括舰面战位的设置;各战位间距离的测量计算;舰载机正常的出动流程分析;舰载机出动时间计算公式的设计。其次,将舰载机舰面布放调度问题转换为带有约束条件的多目标函数求最小解问题,并给出了数学模型。再次,给出了利用改进的粒子群优化(honeybee particle swarm optimization,HPSO)算法和遗传算法(genetic algorithm,GA)对问题求解的解决思路。最后,对两种算法50次独立运算的结果,分别从平均最短出动时间、平均最短移动距离、标准偏差以及算法的收敛性和精确性等方面进行比较。结果表明,HPSO算法较GA更适合于解决该布放问题。
The deck-disposed scheduling methods of carrier planes about De Gaulle are researched based on different optimization algorithms, which can be used to solve the same questions of another aircraft carrier. First, the basic conditions of deck-disposed scheduling problem of carrier planes are analysed, which includes battle position setting, distance measurement between gate position and preparative position, natural takeoff flow analysis, takeoff time expressions about different numbers of carrier planes. Second, the deck-disposed scheduling question is changed into a muhiobjective functions with restriction which needs to figure out the mini mum solution, then the mathematical model is proposed. Third, the honeybee particle swarm optimization (HPSO) and genetic algorithm (GA) are used to solve the problem separately. In the end, the average shortest take- off time, average shortest moving distance, standard deviation and the astringency and accuracy of algorithms about fif- ty separate operations are compared. The result shows that HPSO is fitter than GA for solving the problem.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2013年第2期338-344,共7页
Systems Engineering and Electronics
基金
中国博士后科学基金(201003758)资助课题
关键词
甲板布放
改进的粒子群优化算法
遗传算法
deck-disposition
honeybee particle swarm optimization (HPSO)
genetic algorithm (GA)