期刊文献+

基于超对策偏好认知信息沟的均衡结局鲁棒性分析 被引量:4

Robustness analysis of equilibrium outcomes based on information-gap of hypergame preference perception
下载PDF
导出
摘要 建立了反映超对策结局偏好认知不确定性的信息沟模型,对超对策均衡结局进行了鲁棒性分析。对于给定的不确定参数,通过在初始偏好认知向量的基础上迭代定义一序列新的偏好向量集合,构建超对策偏好认知信息沟模型。基于信息沟模型,通过确定使初始偏好认知下的超对策均衡结局集保持不变的最大不确定参数来讨论超对策均衡结局的鲁棒性。最后,一个军事例子说明了分析方法的实用有效性。 The intormation-gap model which represents the uncertainty of hypergame outcome preference perception is established and the robustness analysis of equilibrium outcomes of hypergame is discussed. For a given uncertainty parameter, by iteratively defining a sequence of sets of preference vectors which are sueces sively further from the nominal preference perception vector, the information-gap model for hypergame prefer- ence perception is designed. The robustness of equilibrium outcomes of hypergame is analyzed based on the in- formation-gap model by determining the greatest value of the uncertainty parameter for which the set of equilib- rium solutions is the same as the nominal equilibrium set. A military example illustrates the proposed method at the end.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第2期362-365,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60774029 7047103 71171198)资助课题
关键词 超对策 均衡结局 鲁棒性分析 信息沟 偏好认知 hypergame equilibrium outcome robustness analysis information gap preference perception
  • 相关文献

参考文献3

二级参考文献41

  • 1[14]Li,K.W.,Hipel,K.W.,Kilgour,D.L.& Fang,L.(2004).Preference uncertainty in the graph model for conflict resolution.IEEE Transactions on Systems,Man and Cybernetics Part A,34 (4):507-520
  • 2[15]Libraries and Archives Canada,(2002).Introduction-War of 1812-From colony to country:A reader's guide to Canadian military history.In:Collections Canada.Available via http://www.collectionscanada.ca/military/h1 3-5001-e.html.Cited January 4,2006
  • 3[16]Obeidi,A.,Hipel,K.W.& Kilgour,D.M.(2005).The role of emotions in envisioning outcomes in conflict analysis.Group Decision and Negotiation,14 (6):481-500
  • 4[17]Nash,J.F.,(1950).Equilibrium points in n-player games.Proceedings National Academy of Sciences,36:48-49
  • 5[18]Nash,J.F.(1951).Non-cooperative games.Annals of Mathematics,54 (2):286-295
  • 6[19]Patterson,B.R.(2005).The Generals:Andrew Jackson,Sir Edward Packenham and the Road to the Battle of New Orleans.New York University Press,New York
  • 7[20]Perkins,B.(1961) Prologue to War;England and the United States.University of California Press,Los Angeles
  • 8[21]Sears,L.M.(1927).Jefferson and the Embargo.Octagon Books,New York City.
  • 9[22]US Army,(2001).Chapter 6,the War of 1812.In:American Military History.Available via:http://www.army.mil/cmh-pg/books/amh/am h-06.htm.Cited September 23,2005
  • 10[23]Wang,M.,Hipel,K.W.& Fraser,N.M.(1988).Modeling misperceptions in games.Behavioral Science,33 (3):207-223

共引文献33

同被引文献27

  • 1郭文革.最终报价仲裁的超对策模型[J].决策与决策支持系统,1995(3):71-78. 被引量:2
  • 2吕俊杰,邱菀华,王元卓.基于相互依赖性的信息安全投资博弈[J].中国管理科学,2006,14(3):7-12. 被引量:14
  • 3Takehiro INOHARA,Keith W. HIPEL,Sean WALKER.CONFLICT ANALYSIS APPROACHES FOR INVESTIGATING ATTITUDES AND MISPERCEPTIONS IN THE WAR OF 1812[J].Journal of Systems Science and Systems Engineering,2007,16(2):181-201. 被引量:30
  • 4崔焰,宋业新.具有模糊偏好认知矩阵的超对策稳定性分析[J].海军工程大学学报,2007,19(6):103-107. 被引量:4
  • 5OBEID1 A, KILGOUR D M, HIPEL K W. Per- ceptual graph model systems [J]. Group Decision and Negotiation, 2009,18(3) : 261-277.
  • 6SASAKI Y, KIJIMA K. Hypergame modeling of systems intelligent agents [C]//Proc. of the 7th International Conference on Service Systems and Service Management. Washington: IEEE, 2010.
  • 7GHARESIFARD B, CORTES J. Evolution of players' misperceptions in hypergames under per- fect observations [J].IEEE Transactions on Au- tomatic Control, 2012,57 (7) : 1627-1640.
  • 8SONG Y X, LI W J, ZENG X H. k-Equilibrium of hypergame with fuzzy strategy and preference perceptions [C] //Proc. of the IEEE International Conference on Intelligent Computing and Intelli- gent Systems. Washington; IEEE, 2009.
  • 9NANDURI V, DAS T K, ROCHA P. Generation capacity expansion in energy markets using a two- level game-theoretic model [J].IEEE Transac- tions on Power Systems, 2009,24(3) : 1165-1172.
  • 10TOYOTA T, KIJIMA K. Modelling of two-level negotiation in hierarchical hypergame framework [C]//Systems Modeling and Simulation: Theory and Applications. Lecture Notes in Computer Sci- ence. Berlin: Springer-Verlag, 2005.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部