期刊文献+

无重访遗传算法及其在输电网络规划中的应用 被引量:9

Non-revisiting Genetic Algorithm and Its Application in Transmission Network Planning
下载PDF
导出
摘要 将无重访的遗传算法(non-revisiting genetic algorithm,NrGA)应用于求解输电网络规划问题。NrGA通过空间二叉分割(binary space partitioning,BSP)和相应的二叉分割树(BSP tree)数据结构对遗传算法搜索过的历史位置进行记录,能够快速检测遗传操作产生的新解是否在BSP tree的历史存档中,对历史存档中已有的新解使用基于BSP的自适应变异机制进行操作,实现遗传算法的无重访搜索。此外,针对输电网络规划问题的具体特点,从编码、交叉、惩罚方法等方面对算法进行改进。最后通过一个典型算例对所提出的方法进行验证。与普通遗传算法相比,NrGA算法具有参数设定区间宽泛、收敛到最优解的概率高等多方面的优势。 A non-revisiting genetic algorithm(NrGA) was used to solve power transmission network planning problem.By advocating binary space partitioning(BSP) and employing a novel binary space partitioning tree(BSP tree) archive to store all the solutions that have been explored before,NrGA can quickly check whether there is a revisit when a new solution is generated by GA,and can mutate an unvisited solution through a novel adaptive mutation operator that based on BSP while a revisit has occurred,which achieves a non-revisiting search.Moreover,according to the characteristics of the transmission network planning problem,some measure was proposed to improve encoding,crossover operator and barrier terms.Finally,a typical example was evaluated to demonstrate the power of the proposed approach.Compared with a canonical genetic algorithm,NrGA shows a broader range of parameter setting and higher probability of convergence to the optimal solution.
作者 高元海 王淳
出处 《中国电机工程学报》 EI CSCD 北大核心 2013年第4期110-117,15,共8页 Proceedings of the CSEE
基金 国家自然科学基金项目(51167012)~~
关键词 电力系统 输电网络规划 无重访 空间二叉分割 遗传算法 自适应变异 power system transmission network planning non-revisiting binary space partitioning(BSP) genetic algorithm(GA) adaptive mutation
  • 相关文献

参考文献18

  • 1王秀丽,王锡凡.遗传算法在输电系统规划中的应用[J].西安交通大学学报,1995,29(8):1-9. 被引量:61
  • 2王小平;曹立明.遗传算法理论、应用与软件实现[M]西安:西安交通大学出版社,20021-50.
  • 3玄光男;程润伟.遗传算法与工程优化[M]北京:清华大学出版社,20041-1321-30.
  • 4Lee J C,Lin W M,Liao G C. Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including wind power system[J].International Journal of Electrical Power & Energy Systems,2011,(02):189-197.
  • 5Hong Y Y,Chen P H. Genetic-based underfrequency load shedding in a stand-alone power system considering fuzzy loads[J].IEEE Transactions on Power Delivery,2012,(01):87-95.
  • 6LaiG G,Yang C F,Huang H M. Optimal connection of power transmission lines with underground power cables to minimize magnetic flux density using genetic algorithms[J].IEEE Transactions on Power Delivery,2008,(03):1553-1560.
  • 7钟平安,徐斌,张金花.水电站发电优化调度遗传算法的改进[J].水力发电学报,2011,30(5):55-60. 被引量:11
  • 8Mustafa M W,Sulaiman M H,ShareefH. Reactive power tracing in pool-based power system utilising the hybrid genetic algorithm and least squares support vector machine[J].IET Generation Transmission & Distribution,2012,(02):133-141.
  • 9Wang X F,McDonald J. Modern power system planning[M].London:McGraw-Hill,1994.392-395.
  • 10CormenT H;LeisersonCE;RivestRL.算法导论[M]北京:机械工业出版社,2008321-326.

二级参考文献77

共引文献393

同被引文献110

引证文献9

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部