期刊文献+

基于椭球模型的无线传感器网络的局部离群点检测 被引量:1

Local outlier detection based on ellipsoids for wireless sensor networks
下载PDF
导出
摘要 针对现有的无线传感器网络(WSNs)的局部离群点检测算法由于存在未考虑监测环境的异质性而造成邻域划分不准确、检测精度低的问题,提出适用于异质监测环境的基于椭球模型的无线传感器网络的局部离群点检测算法。算法用椭球模型刻画数据分布,节点间只传输模型参数,用椭球参数式方程计算椭球间的相异度;将数据分布的不一致性引入到邻域划分的过程中,最终利用传感数据的时空关联性来确定局部离群点。实验结果表明,提出的算法具有通信量低、检测精度高和误检率低的优点。 The existing local outlier detection algorithms in WSNs have some drawbacks, such as the inaccurate of neighbor- hood and low detection precision due to the ignorance of the heterogeneity of monitoring environment. Therefore, this paper proposed a local outlier detection algorithm for WSNs based on ellipsoids for the non-homogeneous environments. This algo- rithm characterized the distribution of data at each sensor by ellipsoids. It transported the parameter of ellipsoids among nodes and adopted the method of ellipsoid parameter equation to calculate the dissimilarity between the ellipsoids, and determined the neighborhood of the node considering the inconsistency of data distribution. Finally, it took the temporal and spatial corre- lation of sensing data to detect local outliers. The experimental results show that this algorithm can achieve great accuracy of detection rate, low false alarm rate and low communications volume in non-homogeneous environment.
出处 《计算机应用研究》 CSCD 北大核心 2013年第2期547-550,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60773049) 江苏省科技型企业创新基金资助项目(BC2010172) 江苏大学高级专业人才科研启动基金项目(09JDG041) 高校博士点基金资助项目(20093227110005)
关键词 无线传感器网络 离群点检测 邻域 异质性 椭球模型 wireless sensor networks (WSNs) outlier detection neighborhood non-homogeneous ellipsoids
  • 相关文献

参考文献11

  • 1CHANDOLA V,BANERJEE A,KUMAR V. Anomaly detection:a survey[J].ACM Computing Surveys,2009,(03):1-58.
  • 2薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 3ZHANG Yang,MERATNIA N,HAVINGA P. An online outlier detection technique for wireless sensor networks using unsupervised quarter-sphere support vector machine[A].2008.151-156.
  • 4RAJASEGARAR S,BEZDEK J C,LECKIEET C. Elliptical anomalies in wireless sensor networks[J].ACM Trans on Sensor Networks,2009,(01):1550-1579.
  • 5WANG Liang,NGUYEN T,BEZDEK J C. iVAT and aVAT:enhanced visual analysis for cluster tendency assessment[A].Beilin:Springer-Verlag,2010.16-27.
  • 6MOSHTAGHI M,HAVENS T C,BEZDEK J C. Clustering ellipses for anomaly detection[J].Pattern Recognition,2011,(01):55-69.
  • 7HAVENS T C,BEZDEK J C. An effcient formulation of the improved visual assessment of cluster tendency (iVAT) algorithm[J].IEEE TKDE,2012,(05):813-822.
  • 8THEODORIDIS S,KOUTROUMBAS K. Pattern recognition[M].New York:Academic Press,Inc,2008.
  • 9KELLEY P M. An algorithm for merging hyperellipsoidal clusters,LAUR-94-3306[R].[S.1.]:Los Alamos National Lab,1994.
  • 10BEZDEK J C,RAJASEGARAR S,MOSHTAGHI M. Anomaly detection in environmental monitoring networks[J].IEEE Computer International Magazine,2011,(02):52-58.

二级参考文献13

  • 1Han Jia-Wei,Kamber Micheline Data Mining:Concepts and Techniques (2nd Edition).San Francisco:Morgan Kaufmann Publishers,2006
  • 2Hawkins D.Identification of Outliers.London:Chapman and Hall,1980
  • 3Knorr E,Ng R.Algorithms for mining distance-based outliers in large datasets//Proceedings of the 24th VLDB Conference.New York,1998:392-403
  • 4Breunig M M,Kriegel H P,Ng R T et al.OPTICS-OF:Identifying local outliers//Proceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases.Prague,1999:262-270
  • 5Breunig M,Knegel H P,Ng R et al.LOF:Identifying density-based local outliers//Proceedings of ACM SIGMOD Conference.Dallas,Texas,2000:93-104
  • 6Tang J,Chen Z,Fu A et al.Enhancing effectiveness of outlier detections for low-density patterns//Proceeding of Advances in Knowledge Discovery and Data Mining 6th PacificAsia Conference.Taipei,China,2002:535-548
  • 7Papadimitirou S,Kitagawa H,Gibbons PB,Faloutsos C.LOCI:Fast outlier detection using the local correlation integral//Proceedings of the 19th International Conference on Data Engineering.Bangalore,2003.Los Alamitos:IEEE Computer Society,2003:315-326
  • 8Chawla Sanjay,Sun Pei.SLOM:A new measure for local spatial outliers.Knowledge and Information Systems,2006,9(4):412-429
  • 9Shekhar S,Chawla S.A Tour of Spaual Databases.Upper Saddle River,N.J.:Prentice Hall,2003
  • 10Lu Chang-Tien,Chen De-Chang,Kou Yu-Feng.Detecting spatial outliers with multiple attributes//Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'03).Sacramento,2003:122-128

共引文献95

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部