期刊文献+

概念格的属性渐减原理与算法研究 被引量:17

Theory and Algorithms of Attribute Decrement for Concept Lattice
下载PDF
导出
摘要 渐进式算法是概念格构造的一类重要算法,但大多关注于形式背景中对象或属性增加的情况.而当形式背景的属性减少时,已有的算法则需要重新构造概念格,较为费时.针对这一情况,研究了属性消减后从原概念格渐进式产生新概念格的理论和算法,并且算法时间复杂度较低.首先分析了原概念格和新概念格中节点间的映射关系以及从原概念格到新概念格中边(节点间的前驱-后继关系)的变化规律.在此基础上,提出了自顶向下和自底向上两种渐进式的概念格属性渐减算法.算法能够对原有概念格直接进行修改来得到新的概念格,避免了从形式背景重新构造概念格,时间复杂度降低为O(‖L‖·‖G‖·‖M‖).实验及分析表明,当属性减少时,能比传统算法节省大量的运行时间. Incremental algorithms for the construction of concept lattices are of key importance. But most of them focus on the case of the addition of objects or attributes in formal context. When the attributes in formal context are deleted, reconstructing concept lattice by these algorithms is needed. It is very time consuming. The theory and algorithms of incrementally obtaining new concept lattice by updating the old one after attributes being deleted are investigated in this paper. At first, the mapping relation between concepts of the old and new concept-lattice is explained and the changes of edges from the old concept lattice to the new one are analyzed. Based on this, two decremental algorithms called top-down and bottom-up algorithms are proposed, by which the original concept lattice can be directly modified to obtain the new one, and reconstructing the whole structure from scratch is avoided. Relying on the structure of concept lattice, the algorithms only explore limited parts of the lattice for modifying. Thus, its time complexity is reduced to O(|L|-|G|-|M|) Experimental results show that the algorithms presented can save considerable time compared with the traditional algorithms.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第2期248-259,共12页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2007CB311101 2011CB302605) 国家"八六三"高技术研究发展计划基金项目(2010AA012504 2011AA010705) 国家自然科学基金项目(61070186 6110018 61173144)
关键词 形式概念分析 概念格 属性 渐减算法 构造 formal concept analysis (FCA) concept lattice attribute decremental algorithm construction
  • 相关文献

参考文献14

  • 1Wille R. Restructuring lattice theory- An approach based onhierarchies of concept [C] //Rival I ed. Ordered Sets.Dordecht- Boston: Reidel, 1982 : 445-470.
  • 2Ganter B,Wille R. Formal Concept Analysis: MathematicalFoundations [M], Berlin; Springer,1999.
  • 3Peng Qiangqiang, Du Yajun, Hai Yufeng,et al. Topic-specific crawling on the Web with concept context graphbased on FCA [C] //Proc of Int Conf on Management andService Science. Piscataway, NJ: IEEE, 2009 : 1-4.
  • 4Shyng J Y,Shieh H M, Tzeng G H. An integration methodcombining rough set theory with formal concept analysis forpersonal investment portfolios [J]. Knowledge-BasedSystem, 2010, 23(6): 586-597.
  • 5Snasel V,Horak Z, Kocibova J, et al. A analyzing socialnetworks using FCA: Complexity aspects [C] //Proc of 2009IEEE/WIC/ACM Int Joint Conf on Web Intelligence (WI)And Intelligent Agent Technologies (IAT). Piscataway,NJ;IEEE, 2009: 38-41.
  • 6Li Yang, Yang Xu,Decision making with uncertaintyinformation based on lattice-valued fuzzy concept lattice [J].International Journal of General Systems, 2010,39(3) : 235-253.
  • 7Kuznetsov S O,Obiedkov S A. Comparing performance ofalgorithms for generating concept lattices [J]. Journal ofExperimental & Theoretical Artificial Intelligence, 2002,14(2): 189-216.
  • 8Nourine L,Raynaud O. A fast algorithm for building lattices[J]. Information Process Letter. 1999,71(5/6) : 199-204.
  • 9Godin R,Missaoui T,Alaui H. An incremental conceptformation algorithm based on Galois (concept) lattices [J].Computational Intelligence, 1995,11(2) : 246-267.
  • 10van der Merwe D, Obiedkov S,Kourie D. Addlntent: A newincremental algorithm for constructing concept lattices [G] //LNCS 2961 : Proc of the 2nd Int Conf on Formal ConceptAnalysis, Berlin: Springer, 2004: 372-385.

二级参考文献40

  • 1张凯,胡运发,王瑜.基于互关联后继树的概念格构造算法[J].计算机研究与发展,2004,41(9):1493-1499. 被引量:15
  • 2李云,刘宗田,陈崚,沈夏炯,徐晓华.基于属性的概念格渐进式生成算法[J].小型微型计算机系统,2004,25(10):1768-1771. 被引量:27
  • 3[1]B Ganter,R Wille.Formal Concept Analysis:Mathematical Foundations.Berlin:Springer-Verlag,1999
  • 4[2]G Stumme,R Wille,U Wille.Conceptual knowledge discovery in databases using formal concept analysis methods.In:Proc of the 2nd European Symp on Principles of Data Mining and Knowledge Discovery.Berlin:Springer-Verlag,1998.450-458
  • 5[3]G Arevalo,T Mens.Analysing object-oriented application frameworks using concept analysis.In:Proc of the Workshops on Advances in Object-Oriented Information Systems.Berlin:Springer-Verlag,2002.53-63
  • 6[4]F Baader,B Sertkaya.Applying formal concept analysis to description logics.In:Proc of the 2nd Int'l Conf on Formal Concept Analysis.Berlin:Springer-Verlag,2004.261-286
  • 7[6]R Godin,R Missaoui,H Alaoui.Incremental concept formation algorithms based on Galois (concept) lattices.Computational Intelligence,1995,11(2):246-267
  • 8Oosthuizen G D. The Application of Concept Lattice to Machine Learning. Technical Report, University of Pretoria, South Africa, 1996.
  • 9Ho T B. Incremental conceptual clustering in the framework of Galois lattice. In: Lu H, Motoda H, Liu H, eds. KDD: Techniques and Applications. Singapore: World Scientific, 1997. 49~64.
  • 10Kent R E. Bowman C M. Digital Libraries, Conceptual Knowledge Systems and the Nebula Interface. Technical Report, University of Arkansas, 1995.

共引文献236

同被引文献113

引证文献17

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部