期刊文献+

一种基于相对模型的分布式预测控制算法研究 被引量:8

Distributed Receding Horizon Control Algorithm on Relative States
下载PDF
导出
摘要 针对分布式系统中高精度的相对状态比绝对状态更易获取的特点,提出了一种基于相对状态模型的分布式预测控制方法。该方法的本质是各子系统通过预测其与相邻子系统的相对状态轨迹来求解分布式最优控制问题。与常规基于绝对状态的分布式预测控制方法相比,该方法的特点在于通过相对状态模型的引进改进算法的实时性,并通过减少测量噪声源提高控制精度。该方法适用于一般非线性分布系统,且在满足一定条件下能够保证整个系统的渐近收敛性。最后,在Matlab仿真环境中将该方法应用于多机器人编队控制中,并验证的该方法的可行性。 In most applications of multiple distributed control problems, higher precise relative states are easier to be obtained compared to absolute states. Based on this, a new relative states based distributed receding horizon formation control method was designed. The proposed distributed control algorithm was implemented by online solving a nonlinear optimal control problem through predicting the relative states trajectory. Compared to the traditional distributed receding horizon control algorithm, the most attracting advantages of the proposed algorithm are 1) the reduced computational burden and 2) the control precision improvement due to introducing less measurement errors. Also, under some conditions, the convergence can be ensured for most of multiple distributed systems with nonlinear models. At last, the algorithm is used in multiple robot formation control system in Matlab simulation environment to verify the method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第2期280-285,292,共7页 Journal of System Simulation
基金 国家自然科学基金(61005078 61035005)
关键词 分布式系统 预测控制 相对状态模型 多机器人系统 distributed system receding horizon control relative state model multiple robotic systems
  • 相关文献

参考文献16

  • 1Murray R M. Recent research in cooperative control of multi-vehicle systems[J].Journal of Dynamic Systems Measurement and Control (S0022-0434),2007,(05):571-583.
  • 2Camponogara E,Oliveira L B. Distributed optimization for model predictive control of linear-dynamic networks[J].IEEE Transactions on Systems Man and Cybernetics (S1083-4427),2009,(06):1331-1338.
  • 3Motee N,Jadbabaie A. Optimal control of spatially distributed systems[J].IEEE Transactions on Automatic Control (S0018-9286),2008,(07):1616-1629.
  • 4Jia D,Krogh B H. Min-max feedback model predictive control for distributed control with communication[J].Proceedings of the American Control Conference (S0743-1619),2002,(06):4507-4512.
  • 5Richards A,How J. Robust distributed model predictive control[J].International Journal of Control (S0020-7179),2007,(09):1517-1531.
  • 6Dunbar W B,Murray R M. Distributed receding horizon control for multi-vehicle formation stabilization[J].Automatica,2006,(06):549-558.doi:10.1016/j.automatica.2005.12.008.
  • 7Michalska H,Mayne D Q. Robust receding horizon control of constrained nonlinear systems[J].IEEE Transactions on Automatic Control (S0018-9286),1993,(11):1623-1633.doi:10.1109/9.262032.
  • 8Leithner J. Formation flying system design for a planet-finding telescopeocculter system[J].Proceedings of SPIE-the International Society for Optical Engineering (S0027-786x),2007,(20):6687.
  • 9Achtelik M,Bachrach A,He R J,Prentice S Roy N. Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments[J].Proceedings of SPIE the International Society for Optical Engineering (S0027-786x),2009.7332.
  • 10Chen X P,Serrani A,Ozbay H. An internal model approach to autonomous leader/follower trailing for non-holonomic vehicles[J].International Journal of Robust and Nonlinear Control (S 1049-8923),2006,(14):641-670.

同被引文献61

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部