期刊文献+

两种近红外光谱分辨率预测牛肉营养成分的比较研究 被引量:7

Comparative study on the prediction of beef nutrients by near infrared spectroscopy under two resolutions
下载PDF
导出
摘要 应用近红外光谱技术在不同光谱分辨率下分析了同一批牛肉样本的蛋白质、脂肪和水分含量。样品取自16头西门塔尔杂交牛的14个部位,宰后成熟48h,绞成肉糜状后分别于不同分辨率1.6和10.0nm条件下进行近红外光谱扫描和化学成分测定。应用The Unscrambler建模软件,采用偏最小二乘回归技术(PLSR),通过交互验证程序建立近红外数学模型,得到不同分辨率1.6和10.0nm条件下蛋白质的校正集相关系数R分别为0.94和0.93,交互验证标准差(RMSECV)分别为0.49和0.54;脂肪R分别为0.93和0.92,RMSECV分别为0.64和0.76;水分R分别为0.87和0.81,RMSECV分别为1.18和1.26。研究结果表明,高光谱分辨率下的蛋白质、脂肪和水分模型精度要略优于低光谱分辨率所建模型。 The protein,fat and moisture of the beef samples under two resolutions were analyzed using near infrared spectroscopy.The samples were obtained from 14 parts of 16 Simmental crossbred cattle. After 48h postmortem aging,these samples would be homogenized and scanned.Immediately after scanning under 1.6 and 10.0nm by near infrared spectroscopy( NIR) ,the samples were analyzed for protein,fat and moisture.The models were set up by partial least squares regression( PLSR) using the Unscrambler software.The results of nutrient contents tested by cross-validation under two resolutions of 1.6 and 10.0nm showed R of 0.94 and 0.93,RMSECV of 0.49 and 0.54 ( protein) ; R of 0.93 and 0.92,RMSECV of 0.64 and 0.76 ( fat) ; R of 0.87 and 0.81,RMSECV of 1.18 and 1.26 ( moisture) ,respectively.The above research results demonstrated that for the models of protein,fat and moisture, the higher resolution provide slightly better results than the lower resolution.
出处 《食品工业科技》 CAS CSCD 北大核心 2013年第3期302-305,共4页 Science and Technology of Food Industry
基金 国家公益性(农业)行业科技专项(201303083 200903012) 国际科技合作专项(2012DFA31140) 农业部"948"重点项目(2011-G5)
关键词 近红外光谱 预测 蛋白质 脂肪 水分 near infrared spectroscopy prediction protein fat moisture
  • 相关文献

参考文献16

  • 1严衍禄;赵龙莲;韩东海.近红外光谱分析基础与应用[M]北京:中国轻工业出版社,2005130.
  • 2SATO H,SHIMOYAMA M,KAMIYA T. Near infrared spectra of pellets and thin films of bigh-density,low-density and linear low-density polyethylenes and prediction of their physical properties by muhivariate data analysis[J].Near Infrared Spectrosc,2003,(04):309-321.
  • 3王一兵,王红宇,翟宏菊,芦菲,吴卫红,王海水,席时权.近红外光谱分辨率对定量分析的影响[J].分析化学,2006,34(5):699-701. 被引量:19
  • 4KESTENS V,CHAROUD-GOT J,BAU A. Online measurement of water content in candidate reference materials by acoustooptical tuneable filter near-infrared spectrometry(AOTFNIR) using pork meat calibrants controlled[J].Food Chemistry,2008,(04):1359-1365.doi:10.1016/j.foodchem.2007.01.081.
  • 5LIAO Y T,FAN Y X,CHENG F. On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy[J].Meat Science,2010,(04):901-907.
  • 6PREVOLNIK M,CANDEK-POTOKAR M,SKORJANC D. Predicting intramuscular fat content in pork and beef by near infrared spcctroscopy[J].Journal of Near Infrared Spectroscopy,2005,(02):77-85.doi:10.1255/jnirs.460.
  • 7VILJOEN M,HOFFMAN L C,BRAND T S. Prediction of the chemical composition of mutton with near infrared reflectance spectroscopy[J].Small Ruminant Research,2007,(1-3):88-94.
  • 8MCDEVITT R M,GAVIN A J,ANDRES S. The ability of visible and near infrared reflectance spectroscopy (NIRS) to predict the chemical composition of ground chicken carcasses and to discriminate betwcen carcasses from different genotypes[J].Journal of Near Infrared Spectroscopy,2005,(03):109-117.doi:10.1255/jnirs.463.
  • 9刘炜,吴昊旻,孙东东,刘全.近红外光谱分析技术在鲜鸡肉快速检测分析中的应用研究[J].中国家禽,2009,31(2):8-11. 被引量:15
  • 10栾东磊,王玉明,薛长湖,任艳,王琦.大黄鱼脂肪含量的近红外光谱快速无损检测[J].中国海洋大学学报(自然科学版),2009,39(S1):59-62. 被引量:3

二级参考文献28

共引文献38

同被引文献82

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部