期刊文献+

海洋溢油合成孔径雷达图像特征提取及其关键度分析 被引量:2

Feature extraction and its criticality analysis for oil spill detection in synthetic aperture radar images
下载PDF
导出
摘要 就SAR图像溢油检测的方法论而言,用于识别溢油和疑似现象的定性或定量的统计特征量选择,通常是任意的。对于不同的分类模型,所选用的特征量也不尽相同。主要是进行海洋SAR图像特征提取及其关键度分析。其目的是将"最小距离"判别法应用于海上溢油和疑似溢油的识别研究。首先,针对海洋SAR图像溢油检测常用的特征量,进行冗余处理;然后,引入关键系数,定量地研究特征量的关键度,提取显著特征量;藉以构造一个多维的特征矢量空间,以适于最小距离判别法在特征矢量空间中进行溢油和疑似溢油的识别研究。 In terms of the methodology of oil spill identifying in SAR images, it is usually arbitrary to select qualita- tive or/and quantitative features for classifying dark objects as oil spill or look alikes. The features seleeted in dif- ferent classification models are not the same. The feature extraction and the eritieality analysis are made in SAR images. Its aim is to apply the minimum distance method to discriminating oil spills from look-alikes. First, through correlation analysis, the redundancy is removed. Next,a criticality coefficient is introduced to quantitative- ly study the criticality of features. Then, distinguishing features are extraeted. Sequentially, the dimension of fea- ture veetor is reduced to fit for the application researeh of the minimum distance method.
出处 《海洋学报》 CAS CSCD 北大核心 2013年第1期85-93,共9页
基金 国家海洋局海洋溢油鉴别与损害评估技术重点实验室(moidat)开放研究基金资助(201003)
关键词 SAR图像 溢油 关键度 特征提取 synthetic aperture radar image oil spill criticality feature extraction
  • 相关文献

参考文献1

二级参考文献5

  • 1Oliver C, Quegan S. Understanding synthetic aperture radar images[M]. Norwood: Artech House, 1998: 245-255.
  • 2Beaulieu J M, Touzi R. Segmentation of textured scenes using polarimetric SARs [ C ]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, 2003,1:446- 448.
  • 3Winkler G. Image analysis random fields and dynamic Monte Carlo methods[ M]. Berlin: Springer-Verlag, 1995 : 195 - 205.
  • 4Baraldi A, Parmiggiani F. An investigation of the textural characteristics associated with gray level matrix statistical parameters[J]. IEEE Trans Geosci Remote Sensing, 1995, 33 293 - 304.
  • 5Dell' Aequa F, Gamba P. Texture-based characterization of urban environments on satellite SAR images [ J ]. IEEE Trans Geosci Remote Sensing, 2003, 41( 1 ) : 153 - 159.

共引文献1

同被引文献24

  • 1梁小祎,张杰,孟俊敏.溢油SAR图像分类中的纹理特征选择[J].海洋科学进展,2007,25(3):346-354. 被引量:19
  • 2中国石化集团洛阳石油化工工程公司.GB50493-2009石油化工可燃气体和有毒气体检测报警设计规范[S].北京:中国计划出版社,2009:4-42.
  • 3Cococcioni M, Corucci L, Masini A. SVME: An ensemble of support vector machines for detecting oil spills from full resolution MODIS images[J]. Ocean Dynamics, 2012,62 ( 3 ) : 449-451.
  • 4中国新闻网.蓬莱19-3油田溢油事故调查处理报告发布[EB/OL].http://www.chinanews.com/gn/2012/06.21/3980404-3.shtml,2012-06-21.
  • 5K. Weisteen, A. Solberg, and R. Solberg. Detection of oil spills in SAR images using a statistical classification scheme[C]. in Proc. IEEE Symp. Geosci. Remote Sensing (IGARSS). Tokyo, 1993:943-945.
  • 6K. Topouzelis V. Karathanassi P. Pavlakis D. Rokos. Detection and discrimination between oil spills and lookalike phenomena through neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007,62(4) :264-270.
  • 7Antonio Martinez and Victoriano Moreno. An oil spill monitoring system based on SAR images[J]. Spill Science and Technology Bulletin, 1997,3 (1):65-71.
  • 8国家卫星海洋应用中心,中国海监总队.海上溢油卫星遥感监测技术培训[Z] 2009,7.
  • 9Christopher R. Jackson John R. Apel. Heidi A.Espedal.Synthetic Aperture Radar Marine User’s Manual.Chapter 11—Oils and Surfactants[M].Werner Alpers.2004:263-276.
  • 10Espedal, H. A. Detection of oil spill and natural film in the marine environment by spaceborne synthetic aperture radar[D]. PhD thesis, Department of Physics University of Bergen and Nansen Environment and Remote Sensing Center, Norway ,1998.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部