摘要
为增强晶体硅太阳电池的光利用率,提高光电转换效率,研究了硅纳米线阵列的光学散射性质.运用严格耦合波理论对硅纳米线阵列在310—1127nm波段的反射率进行了模拟计算,用田口方法对硅纳米线阵列的表面传输效率进行了优化.结果表明,当硅纳米线阵列的周期为50nm,占空比为0.6,高度约1000nm时减反射效果最佳;该结构在上述波段的平均反射率约为2%,且在较大入射角度范围保持不变.采用金属催化化学腐蚀法,于室温、室压条件下在单晶硅表面制备周期为60nm,占空比为0.53,高度为500nm的硅纳米线阵列结构,其反射率的实验测试结果与计算模拟值相符,在上述波段的平均反射率为4%—5%,相对于单晶硅35%左右的反射率,减反射效果明显.这种减反射微结构能够在降低太阳电池成本的同时有效减小单晶硅表面的光反射损失,提高光电转换效率.
In order to trap more sunlight onto the crystalline silicon solar cell and improve the photo-electric conversion efficiency, it is very important to study the optical scattering properties of silicon nanowire arrays on silicon wafer. The rigorous coupled wave analysis method is used for optical simulation, and the Taguchi method is used for efficient optimization. The simulation results show that at the above-mentioned wavelengths the reflectance of the optimized structure is less than 2%, and also able to achieve the wide-angle antireflection. At room temperature and ambient pressure, the silicon nanowire arrays each with a period of 50 nm, duty ratio of 0.6 and height of 1000 nm are successfully prepared on mono-crystalline Si wafers using a novel metal-catalyzed chemical etching technique, the reflectance test results are consistent with simulation values. The average reflectance of the optimized structure over the above-mentioned wavelength range is 4%–5%, showing that the antireflection effect is obvious compared with the reflectivity of about 35%of the single crystal silicon. The minus reflection microstructures reduce the sun battery microstructure costs, at the same time, reduce the monocrystalline silicon surface light reflecting loss, improve the photoelectric conversion efficiency.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2013年第3期335-341,共7页
Acta Physica Sinica
基金
国家自然科学基金(批准号:61077006)
西北大学教学改革项目(批准号:07YKC22)
西北大学研究生自主创新项目(批准号:09YSY11)资助~~
关键词
减反射
硅纳米线阵列
严格耦合波理论
金属催化硅化学刻蚀
antireflection, silicon nanowire arrays, rigorous coupled-wave analysis, metal-assisted chemical etching