摘要
应用可动边界变分问题的理论研究了弹塑性理论的裂纹扩展问题。根据裂纹扩展时能量泛函的驻值条件,建立了任意元素的围道积分定理。由围道积分定理可求得裂纹扩展时的能量释放量,同时,基于能量泛函数二阶变分,得到了裂纹扩展时的稳定条件和临界条件。
With the variational principle of variable boundary, we study the crack extension on elasto-plastic conditions. Based on the stationary condition of energy functional, we set up the integral theorem along the boundary of arbitrary element and get the energy release quantity with the integral theorem. Moreover we obtain the stable and critical conditions of cf crack extension based on the second variation of energy functional.
出处
《北京工业大学学报》
CAS
CSCD
1991年第2期18-25,共8页
Journal of Beijing University of Technology
关键词
非线性
弹性理论
裂纹
扩展
变分法
variational problem of variable boundary, sub-critical condition of crack extension, critical condition of crack extension