期刊文献+

遥感影像分类后处理的地统计方法 被引量:3

Geostatistical Approaches to Post-classification of Remote Sensing Image
原文传递
导出
摘要 采用地统计学中带局部均值的简单克里格方法和协同克里格方法,利用基于训练样本的指示数据(位置和类别)和基于光谱初分类的类别概率数据的空间结构信息,对未知点位的类别发生概率进行预测,从而修正初分类结果。实验结果表明,两种方法所获得的精度相较初分类的精度均有明显提高,这种充分利用训练样本信息改善分类结果的策略不局限于特定的初始分类器。 This paper explores two methods pertaining to geostatistics,i.e.,simple kriging with local mean and cokriging,to predict class occurrences based on training samples' indicator transforms(location and classes) and spectrally derived class probabilities,thus calibrating the a posterior class probability vectors derived from initial spectral classification.The results showed that classification accuracy is significantly increased by these two methods for utilizing spatial information contained in training samples and initial spectral classification,compared with those obtainable with spectral classification.Moreover,the proposed methods constitute a valuable strategy for making fuller use of information residing in training data for improving spectrally derived classification,which is independent of the specific classifiers initially adopted for image classification.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第1期15-18,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41071286 41171346)
关键词 分类 信息 地统计学 克里格 Arif指数 精度 classification information geostatistics Kriging Arif index accuracy
  • 相关文献

参考文献10

  • 1Foody G M. Status of Land Cover Classification Accuracy Assessment[J].Remote Sensing of Environment,2002,(1):185-201.doi:10.1016/S0034-4257(01)00295-4.
  • 2Battiti R. Using Mutual Information for Selecting Features in Supervised Neural Net Learning[J].IEEE Transactions on Neural Networks,1995,(04):537-551.
  • 3Goovaerts P. Geostatistical Incorporation of Spatial Coordinates into Supervised Classification of Hyperspectral Data[J].geographical systems,2002.9-111.
  • 4张景雄,Michael F Goodchild.野外空间采样的渐进式策略[J].武汉大学学报(信息科学版),2008,33(5):441-445. 被引量:7
  • 5张景雄.空间信息的尺度、不确定性与融合[M]武汉:武汉大学出版社,2008.
  • 6Goovaerts P. Geostatistics for Natural Resources Evaluation[M].New York:Oxford Univeristy Press,1997.
  • 7Arif M,Afsar F A,Akram M U. Arif Index for Predicting the Classification Accuracy of Features and its Application in Heart Beat Classification Problem[A].Thailand,2009.
  • 8Homer C,Dewitz J,Fry J. Completion of the 2001 National Land Cover Database for the Conterminous United States[J].Photogram Metric Engineering and Remote Sensing,2007,(04):337-341.
  • 9万幼川,黄俊.几何和图论特征对高分辨率遥感影像土地利用分类的影响[J].武汉大学学报(信息科学版),2009,34(7):794-798. 被引量:9
  • 10Meyer D. Support Vector Machines-The Interface to Libsvm in Package e1071[OL].http://cran.rproject.org/web/packages/el071/vignettes /svmdoc.pdf,2009.

二级参考文献17

  • 1陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 2曹占辉,李言俊,张科,吴盘龙.一种基于高斯函数的直线型边缘提取算法[J].红外技术,2006,28(4):207-209. 被引量:2
  • 3惠文华.基于支持向量机的遥感图像分类方法[J].地球科学与环境学报,2006,28(2):93-95. 被引量:46
  • 4Benediktsson J A, Palmason J A, Sveinsson J R. Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491.
  • 5Bruzzone L, Carlin L. A Multilevel Context-based System for Classification of Very High Spatial Resolution Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9) :2 587-2 600.
  • 6Unsalan C, Boyer K L. A Theoretical and Experimental Investigation of Graph Theoretical Measures for Land Development in Satellite Imagery [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 575-589.
  • 7Ore O. Theory of Graphs[M]. Providence: AMS Bookstore, 1967.
  • 8Gazit H. An Optimal Randomized Parallel Algorithm for Finding Connected Components in a Graph [C]. The 27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario, Canada, 1985.
  • 9Journel A G, Huljbregts C J. Mining Geostatistics[M]. London: Academic Press,1978
  • 10McBratney A B , Webster R, Burgess T M. The Design of Optimal Sampling Schemes for Local Estimation and Mapping of Regionalized Variables: 1. Theory and Method [J]. Computers and Geoscienees,1981(7) : 331-334

共引文献14

同被引文献47

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部