期刊文献+

色散补偿光子晶体光纤结构参数对其色散的影响 被引量:2

Effects of structure parameters on the dispersion properties of dispersion compensation photonic crystal fiber
原文传递
导出
摘要 光子晶体光纤由于其灵活可调的色散特性用作色散补偿具有极大的应用潜力.设计了一种色散补偿光子晶体光纤,并运用频域有限差分法模拟了其色散特性,从理论上分析了其结构参数孔间距Λ和空气占空比d/Λ对该光子晶体光纤的色散系数的影响,并且实际制备出了3种不同结构参数的光子晶体光纤.通过对其色散曲线对比分析表明:当光子晶体光纤孔间距在1μm附近时,其色散系数随着孔间距Λ和占空比d/Λ的增大而增加,但对于孔间距Λ的变化比占空比d/Λ更为敏感,并且随着孔间距Λ的增加,其对色散系数的影响能力逐渐减小.设计并制备的光子晶体光纤在1550nm处的色散系数为-241.5ps·nm-1·km-1,相对色散斜率为0.0018,具有较好的色散补偿能力. Photonic crystal fiber has great potential applications such as dispersion compensation due to its adjustable and flexible dispersion characteristics. In this paper, we design a dispersion compensation photonic crystal fiber, simulate the dispersion characteristics by the finite-difference frequency-domain method, and analyse the effects of the structure parameters air hole spacing Λ and air-filling fraction d/Λ on the dispersion of photonic crystal fiber theoretically. And we also fabricate three photonic crystal fibers with different structural parameters. Through the comparison and analysis of their dispersion curves, we have the following conclusions: the dispersion coefficient increases with air hole spacing Λ and air-filling fraction d/Λ increasing when the air hole spacing of photonic crystal fiber is about 1 μm, but the dispersion is more sensitive to the change of air hole spacing Λ than to air-filling fraction d/Λ, and the effect of air hole spacing on the dispersion coefficient decreases with the increase of air hole spacing. One of the photonic crystal fibers realizes the designed structure: its dispersion coefficient is 241.5 ps·nm-1·km-1, relative dispersion slope is 0.0018 at 1550 nm, it has good ability in dispersion compensation.
机构地区 华中科技大学
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第4期278-283,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:81100701)资助的课题~~
关键词 色散 色散补偿 光子晶体光纤 结构参数 dispersion, dispersion compensation, photonic crystal fiber, structure parameters
  • 相关文献

参考文献12

  • 1Qian D;Huang M;Ip E;Huang Y; Shao Y; Hu J; Wang T.查看详情[A],Los AngelesCaliforniaUSA2011PDPB5.
  • 2Akihide S;Hiroji M;Takayuki K;Masamichi F; Kengo H; Eiji Y; Yu- taka M; Munehiro M; Masato M; Hiroshi Y; Yohei S; Hiroyuki I.查看详情[A],San DiegoCaliforniaUSA2010PDPB7.
  • 3Cai J X;Cai Y;Davidson C;Lucero A; Zhang H; Foursa D; Sinkin O; Patterson W; Pilipetskii A; Mohs G; Bergano N.查看详情[A],Los AngelesCaliforniaUSA2011PDPB4.
  • 4Masanori K;Kunimasa S;Yasuo K.查看详情[J],IEICE Electronics Express200998.
  • 5Fini J M;Zhu B;Taunay T F;Yan M F.查看详情[J],Optics Express201015122.
  • 6Tetsuya H;Toshiki T;Osamu S;Takashi S; Eisuke S.查看详情[J],Optics Express201116576.
  • 7Xia C;Bai N;Ozdur I;Zhou X; Li G.查看详情[J],Optics Express201116653.
  • 8Moritz M V;Marwan A A;Andreas V;Thomas G.查看详情[J],Optics Letters20092876.
  • 9Fini J M.查看详情[J],Optics Express20114042.
  • 10Zhu B;Taunay T;Fishteyn M;Liu X; Chandrasekhar S; Yan M; Fini J; Monberg E; Dimarcello F.查看详情[A],Los AngelesCaliforniaUSA2011PDPB7.

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部