期刊文献+

Z箍缩动态黑腔阴影像诊断研究 被引量:1

Study of Z-pinch dynamic hohlraum shadowgraphy
原文传递
导出
摘要 为了获得填充泡沫的钨丝阵动态黑腔动力学演化图像,研究钨等离子体与泡沫柱的相互作用形式,在1MA脉冲功率装置上设计了四分幅紫外探针光(266nm)阴影成像系统,该系统时间分辨为2.5ns,静态空间分辨优于70μm,径向阴影图像展示了从固体丝膨胀消融到先驱等离子体与泡沫相互作用,从泡沫的箍缩到反弹膨胀的全过程.图像显示了在长约50ns时间内丝等离子体以"雨"的形式持续与泡沫相互作用,在整个箍缩阶段并未观察到等离子体壳层结构.定量分析表明泡沫柱的最小箍缩速度为1.0×106cm/s,最大箍缩速度为6.0×106cm/s,在轴上滞止的直径约为1mm.通过对数值模拟计算结果的讨论,明确了在Z箍缩等离子体状态下阴影成像结果主要反映了逆轫致吸收效应,与径向功率波形的时间关联给出了钨等离子体主体与泡沫柱相互作用时刻的图像. In order to obtain the dynamic evolution image of tungsten array for foam padding, and to research the form of interaction between tungsten plasma and foam column, a shadow imaging system of four-frame ultraviolet probe laser (266 nm) is designed on 1 MA pulse power device. The time resolution of the system is 2.5 ns, and static space resolution is superior to 70 μm. The radial shadowgraphy image reveals the whole process from the melting and expansion of solid wire to the interaction between the precursor plasma and the foam, from the pinch to rebound inflation. The image shows the continuous interaction between tungsten plasma and foam in the form of Raining within a time of about 50 ns, the plasma shell structure is not found in the whole period of pinch. The quantitative analysis indicates that the minimum pinching speed of the foam column is 1.0×106 cm/s, and maximum pinching speed is 6.0×106 cm/s, and the axial stagnation diameter is about 1 mm. Shadowgram mainly shows the inverse bremsstrunlung effect of interaction between laser and plasma through simulation calculating, and main tungsten plasma interacting with foam column image is shown through synchronizing radial power profile.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第4期362-369,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11005095)资助的课题~~
关键词 动态黑腔 阴影像 箍缩速度 dynomic hohlraum, shadowgram, pinching speed
  • 相关文献

参考文献2

二级参考文献22

  • 1Zhao Y et al. J. Mater. Res.. 2002, 17:3139.
  • 2Lambrecht W R L, Segall B. Phys. Rev. B, 1989, 40:9909.
  • 3Tateyama Yet al. Phys. Rev. B, 1997, 55:R10161.
  • 4Zheng J C et al. J. Phys. : Condens. Matter, 1999, 11 : 927.
  • 5Zheng R Q et al. Appl. Phys. Lett. , 1999, 75 : 2259.
  • 6Sun H et al. Phys. Rev. B, 2001, 64:094108.
  • 7Gao F et al. Phys. Rev. Lett. , 2003, 91 : 015502.
  • 8Kelly A, Macmillan N H. Strong Solids, 3rd ed. Oxford:Clarendon Press, 1986,1-56.
  • 9Morris J W, Jr et al. Phase Transformations and Evolution in Materials. Ed. Turchi P E, Gonis A. TMS, Warrendale, PA,2000. 187-207.
  • 10Jhi S H et al. Phys. Rev. Lett. , 2001, 87 : 075503.

共引文献5

同被引文献10

  • 1宁家敏,蒋世伦,徐荣昆,郭存.强脉冲软X光辐照薄塑料闪烁体发光特性研究[J].强激光与粒子束,2006,18(7):1215-1218. 被引量:14
  • 2盛亮,魏福利,吕敏,王奎禄,邱爱慈,黑东炜,邱孟通,袁媛,赵吉祯,王培伟.丝阵负载Z箍缩可见光图像诊断系统[J].强激光与粒子束,2006,18(8):1396-1400. 被引量:14
  • 3Lebedev S V,Beg F N,Bland S N,et al.Effect of discrete wires on the implosion dynamics of wire array Z pinches[J].Physics of Plasmas,2001,8 (8):3734 3747.
  • 4Ivanov V V,Kantsyrev V L,Sotnikov V I,et al.Investigation of regimes of wire array implosion on the 1 MA Zebra accelerator[J].Physicsof Plasmas,2006,13:012704.
  • 5Sinars D B,Cuneo M E,Jones B,et al.Measurements of the mass distribution and instability growth for wire-array Z-pinch implosions driven by 14-20 MA[J].Physics of Plasmas,2005,12:056303.
  • 6Zier J C,Douglass J D,BlesenerI C,et al.Azimuthally correlated ablation between z-pinch wire cores[J].Physics of Plasmas,2009,16:102702.
  • 7Sherlock M,Chittenden J P,Lebedev S V,et al.Ion collisions and the Z-pinch precursor column[J].Physics of Plasmas,2004,11(4):1609-1616.
  • 8丁宁,邬吉明,戴自换,张扬,尹丽,姚彦忠,孙顺凯,宁成,束小建.Z箍缩内爆的MARED程序数值模拟分析[J].物理学报,2010,59(12):8707-8716. 被引量:4
  • 9蒋树庆,叶繁,杨建伦,夏广新,章法强,李正宏,徐荣昆,许泽平,潘英俊.“强光一号”锥形丝阵内爆特性研究[J].物理学报,2012,61(19):330-336. 被引量:3
  • 10邱孟通,吕敏,王奎禄,黑东炜,邱爱慈,曾正中,杜继业,蒯斌,袁媛,田慧,孙凤荣,罗建辉.Z-pinch X射线时间分辨多幅图像诊断系统[J].强激光与粒子束,2003,15(1):101-104. 被引量:16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部