期刊文献+

Sr掺杂钙钛矿型氧化物Y_(1-x)Sr_xCoO_3的溶胶-凝胶制备及电阻率温度关系研究 被引量:1

Temperature dependence of electrical resistivity for Sr-doped perovskite-type oxide Y_(1-x)Sr_xCoO_3 prepared by sol-gel process
原文传递
导出
摘要 采用溶胶-凝胶方法成功制备了Sr的替代化合物Y1xSrxCoO3(x=0,0.01,0.05,0.10,0.15,0.20),系统地研究了20—720K温度范围内Y1-xSrxCoO3的电阻率温度关系.研究表明,随着Sr的替代含量的增加,Y1-xSrxCoO3的电阻率迅速地降低,这主要是由于载流子浓度的增加引起.样品x=0和0.01在低于330和260K的温度范围内,电阻率与温度之间满足指数关系lnρ∝1/T,获得导电激活能分别为0.2950和0.1461eV.然而,实验显示lnρ∝1/T关系仅成立于重掺杂样品的高温区;在低温区莫特定律lnρ∝T-1/4成立,且表明重掺杂引入势垒,导致大量局域态的形成.根据莫特T-1/4定律拟合实验数据,评估了局域态密度N(EF),它随着掺杂量的增加而增加. The temperature dependences of electrical resistivity for Sr-substituted compounds Y1-xSrxCoO3 (x=0, 0.01, 0.05, 0.10, 0.15, 0.20), prepared successfully by sol-gel process, are investigated in a temperature range from 20 to 720 K. The results indicate that with the increase of doping content of Sr the resistivity of Y1-xSrxCoO3 decreases remarkably, which is found to be caused by the increase of carrier concentration. In a temperature range below 330 and 260 K for the sample x=0 and 0.01, the relationship of resistivity versus temperature processes exponential relationship lnρ∝1/T, with conduction activation energy 0.2950 and 0.1461 eV for the sample x=0 and 0.01 respectively. Moreover, experiments show that the relationship lnρ∝1/T exists only in high-temperature regime for the heavily doped samples; at low temperatures Mott’s law lnρ∝T-1/4 is observed, indicating that heavy doping produces strong potential, which leads to the formation of considerable localized state. By fitting the experimental data to Mott’s T-1/4 law, the density of localized states N(EF) at Fermi level is estimated, which is found to increase with doping content increasing.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第4期417-423,共7页 Acta Physica Sinica
基金 中国科学院新型薄膜太阳电池重点实验室开放研究基金(批准号:KF201101) 安徽省高等学校省级自然科学重点研究项目(批准号:KJ2011A053) 安徽省高等学校省级自然科学研究项目(批准号:KJ2012Z034) 国家自然科学基金(批准号:51202005 11204005 41075027)资助的课题~~
关键词 热电材料 溶胶 凝胶 YCoO3 thermoelectric materials, sol-gel, YCoO3
  • 相关文献

参考文献1

二级参考文献15

  • 1Ryu G S, Choe K B, Song C K 2006 Thin Solid Films 514 302.
  • 2Adhikari B, Majumdar S 2004 Prog. Polym. Sci. 29 699.
  • 3Matters M, de Leeuw D M, Vissenberg M J C M, Hart C M, Herwig P T, Geuns T, Mutsaers C M J, Drury C J 1999 Opt. Mater. 12 189.
  • 4Schon J H, Kloc C, Batlogg B 2000 Appl. Phys. Lett. 77 3776.
  • 5Sundar V C, Zaumseil J, Podzorov V, Menard E, Willett R L, Someya T, Gershenson M E, Rogers J A 2004 Science 303 1644.
  • 6Tao C L, Zhang X H, Dong M J, Liu Y Y, Sun S, Ou G P, Zhang F J, Zhang H L 2008 Chin. Phys. B 17 281.
  • 7袁广才 徐征 赵谡玲 张福俊 姜薇薇 黄金昭 宋丹丹 朱海娜 黄金英 徐叙瑢.物理学报,2008,57:5911-5911.
  • 8Jurchescu O D, Baas J, Palstra T T M 2004 Appl. Phys. Lett. 84 3061.
  • 9Sirringhaus H, Tessler N, Friend R H 1999 Synth. Met. 102 857.
  • 10Cho S, Lee K, Yuen J, Wang G M, Moses D, Heeger A J, Surin M, Lazzaroni R 2006 J. Appl. Phys. 100 14503.

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部