期刊文献+

基于非均匀螺旋线数据和布雷格曼迭代的快速磁共振成像方法 被引量:9

A new fast magnetic resonance imaging method based on variabledensity spiral data acquisition and Bregman iterative reconstruction
原文传递
导出
摘要 数据采集时间长是制约磁共振成像技术发展的重要瓶颈.为了解决这一问题,本文基于压缩感知成像理论,提出了一种结合非均匀螺旋线磁共振数据采集序列和布雷格曼迭代重建的快速磁共振成像方法,通过欠采样缩短数据采集时间.欠采样引起混迭伪影则通过非均匀螺旋线欠采样特性和布雷格曼迭代重建去除.水模磁共振成像实验和在体磁共振成像实验结果表明:欠采样情况下,所提出的方法能有效去除欠采样导致的混迭伪影,获得的图像结构信息完整的成像结果,在缩短采样时间的同时,具有较高的准确度. Data acquisition time is a bottle neck for increasing imaging speed of magnetic resonance imaging. To solve the problem, anew fast magnetic resonance imaging method based on variable-density spiral acquisition and Bregman iterative reconstruction is proposed in this paper, under the framework of compressed sensing. The proposed method increases the acquisition speed by data undersampling. The resulting undersampling aliasing artifact is removed by utilizing the intrinsic property of variable-density spiral and Bregman iterative recosntruction. The proposed method is validated by both phantom experiemnt and in vivo experiment. The experimental results demonstrate that the proposed method can effectively remove aliasing artifact from data undersampling, and achieve an image with well-preserved image structure information. Therefore this method can be used for reducing data acquisition time.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第4期502-508,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:81101030)资助的课题~~
关键词 磁共振成像 非均匀螺旋线 全变分 布雷格曼迭代 magnetic resonance imaging, variable-density spiral, total variation, bregman iteration
  • 相关文献

参考文献1

二级参考文献56

  • 1Gotoh Y, Fujimura K, Koike M, Ohkoshi Y, Nagura M, Akamatsu K, Deki S 2001 Mater. Res. Bull. 36 2263.
  • 2KocR 1998,J. Mater Sci. 33 1049.
  • 3Sen W, Xu B Q, Yang B, Dai Y N, Sun H Y, Ma W H, Wan H L 2010 Light Met. 12 44.
  • 4Holt J B, Munir Z A 1986 J. Mater. Sci. 21 251.
  • 5Yamada O, Miyamoto Y, Koizumi M 1987 J. Am. Ceram. Soc. 70 C-206.
  • 6Aeiji A, Wada T, Mihara T, Miyamoto Y, Koizumi M, Yamada O 1989 J. Am. Ceram. Soc. 72 805.
  • 7Klerk J D E 1965 Rev. Sci. lnstrum. 36 1540.
  • 8Dodd S P, Cankurtaran M, James B 2003 J. Mater. Sci. 38 1107.
  • 9Chang Y A, Toth L E, Tyan Y S 1971 Metall Trans. 2 315.
  • 10Wolf W, Podloucky R, Antretter T, Fischer F D 1999 Philos. Mag. B 79 839.

共引文献13

同被引文献61

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2聂生东,聂斌.脑功能磁共振图像中Nyquist伪影的处理方法研究[J].中国医学影像技术,2004,20(8):1277-1280. 被引量:1
  • 3焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761-773. 被引量:40
  • 4张京超, 付宁, 乔立岩, 彭喜元 2014 物理学报 63 030701.
  • 5Bandettini PA,Wong EC,Hinks RS,et al.Time course EPI of human brain function during task activation.Magn Reson Med,25(2):390-397.
  • 6Kwong KK,Belliveau JW,Chesler DA,et al.Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.Proc Natl Acad Sci U S A,1992,89(2):5675-5679.
  • 7Mansfield P.Multi-planar image formation using NMR spin echoes.J Phys Chem C,1977,10(3):L55-L58.
  • 8Ogawa S,Lee TM,Kay AR,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proc Natl Acad Sci U S A,1990,87(24):868-9872.
  • 9Glover GH.Spiral imaging in fMRI.NeuroImage,2012,62(2):706-712.
  • 10Noll D,Cohen J,Meyer C,et al.Spiral k-space MR imaging of cortical activation.J Magn Reson Imaging,1995,5(1):49-56.

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部