期刊文献+

PECVD下基底温度对SiC薄膜形态、成分及生长速度的影响 被引量:1

Influence of Substrate Temperature on the Morphology,Composition and Growth Rate of SiC Films Deposited by PECVD
下载PDF
导出
摘要 在单晶Si和多晶Cu基底表面上使用等离子体增强化学气相沉积(PECVD)方法沉积了SiC薄膜.通过高分辨透射电子显微镜(HRTEM)、X射线光电子能谱仪(XPS)及扫描电子显微镜(SEM)研究基底温度对SiC薄膜成分、结构及生长速度的影响规律。结果表明:在60~500℃基底温度下制备的SiC薄膜均为非晶态薄膜,薄膜的生长速度随基底温度的升高而线性降低,并且在相同沉积条件下,薄膜在Si基底上的生长速度要高于Cu基底。此外,薄膜中的硅碳原子比随基底温度的升高而降低,当基底温度控制在350℃左右时,可以获得硅碳比为1:1较理想的SiC薄膜。 SiC films were deposited on the surface of single crystal Si(100) and polycrystalline Cu by plasma en- hanced chemical vapor deposition (PECVD). The effect of substrate temperature on the composition, structure and growth rate of as-deposited films was studied by high resolution transmission electron microscope (HRTEM), X-ray photoelectron spectroscope (XPS) and scanning electron microscope (SEM). The results showed that the as-deposited films were amorphous and the growth rate of films decreased with increasing substrate temperature from 60℃ to 500℃. In addition, the growth rate of films deposited on the Si(100) wafer was higher than ones deposited on the polycrystalline Cu under the same deposition conditions. Meanwhile, it was found that the Si/C ratio of films decreased with the increase of substrate temperature. When the substrate temperature was controlled at about 350℃, the Si/C ratio in film was nearly equal to 1:1
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第2期201-206,共6页 Journal of Inorganic Materials
基金 国家自然科学基金(51202211 51202187) 江苏省新型环保重点实验室开放课题基金(AE201013)~~
关键词 碳化硅 等离子体增强化学气相沉积 非晶态薄膜 生长速度 基底温度 SiC PECVD amorphous film growth rate substrate temperature
  • 相关文献

参考文献2

二级参考文献23

  • 1王科范,刘金锋,邹崇文,徐彭寿,潘海滨,张西庚,王文君.一种新型Si电子束蒸发器的研制及其应用研究[J].真空科学与技术学报,2005,25(1):75-78. 被引量:16
  • 2刘金锋,刘忠良,王科范,徐彭寿,汤洪高.Si(111)衬底上3C-SiC的固源MBE异质外延生长[J].真空科学与技术学报,2007,27(1):5-9. 被引量:9
  • 3Kong H S,Appl Phys Lett,1987年,51卷,6期,442页
  • 4Davis R F,Kelner G,Shur M,et al.Proc.IEEE,1991,79 (5):677-701.of Inorganic Materails),2002,17 (4):685-690.
  • 5Nagasawa H,Yagi K.Phys.stat.sol.(b),1997,202:335-358.
  • 6Fissel A.Physics Report,2003,379:149-255.
  • 7Cimalla V,Stauden Th,Ecke G,et al.Appl.Phys.Lett.,1998,73 (24):3542-3544.
  • 8Zekentes K,Papaioannou V,Pecz B,et al.J.Cryst.Growth,1995,157:392-399.
  • 9Madapura S,Steckl A J,Loboda M.J.Electrochem.Soc.,1999,146 (3):1197-1202.
  • 10Kim Kwang Chul,Park Chan Il,Roh Jae Il,et al.J.Electrochem.Soc.,2001,148 (5):C383-C389.

共引文献14

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部