期刊文献+

HTI介质饱和流体特性和裂缝密度对方位反射系数的影响 被引量:8

Influence of HTI medium saturated fluid properties and fracture density on azimuthal reflectivity
下载PDF
导出
摘要 结合等效介质理论和Thomsen裂缝理论构建了饱和流体HTI介质弹性矩阵并推导出HTI介质弹性波反射/透射方程,基于该方程讨论了流体类型及裂缝密度对方位反射系数的影响。模型试算结果表明:下伏HTI介质饱含气和饱含水之间的方位反射系数差异比饱含油和饱含水之间的明显,饱含气和饱含水反射系数的差异随着入射角增大而增大,随方位角增大而减小;裂缝密度越大反射系数越小,不同裂缝密度的反射系数差异随着入射角和方位角增大而增大。研究结果为利用方位地震反射特征检测裂缝密度和流体性质提供了理论依据。 We build saturated fluid HTI medium elasticity matrix with equivalent medium theory and Thomsen fracture theory,and derivate elastic wave reflection-transmission equation of HTI media.Based on the equation,we discuss how fluid type and fracture density impact azimuth reflectivity.Model tests indicate that it is easier to distinguish differences of azimuth reflectivity between gas and water layer than that of oil and water layer.Furthermore,the larger incident angle causes the bigger reflectivity difference between gas and water layer and the larger azimuth angle causes the smaller that of difference.When fracture density increases,reflectivity decreases.The larger incident angle and the larger azimuth lead to the bigger reflectivity difference of different fracture density.The research can provide theory basis for fracture and fluid detection by azimuth seismic reflection characteristics.
出处 《石油物探》 EI CSCD 北大核心 2013年第1期1-10,4,共10页 Geophysical Prospecting For Petroleum
基金 国家科技重大专项(2011ZX05009-003-004)资助
关键词 HTI介质 弹性矩阵 反射 透射方程 流体类型 裂缝密度 HTI medium elasticity matrix reflection-transmission equation fluid type fracture density
  • 相关文献

参考文献16

  • 1Brown R, Korringa J. On the dependence of the elas- tic properties of a porous rock on the compressibility of the pore fluid[J]. Geophysics, 1975,40(3) : 608- 616.
  • 2Cheng C H. Seismic velocities in porous rocks:direct and inverse problems [D]. Massachusetters: MIT, 1978.
  • 3Cheng C H. Crack models for a transversely aniso- tropic medium [J]. Geophysical Research, 1993, 98 (14) :675-684.
  • 4Hudson J A. Overall properties of a cracked soild [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1980,88(2) : 371-384.
  • 5Hudson J A. Wave speeds and attenation of elastic waves in material containing cracks[J]. Geophysical Journal of the Royal Astronomical Society, 1981,64 (1):133-150.
  • 6Thomson L. Elastic anisotropy due to aligned cracks in porous rock[J]. Geophysical Prospecting, 1995,43 (6) :805-829.
  • 7Hill R. The elstic behavior of crystalline aggregate [J]. Proceeding of the Physical Society, 1952, 65 (A) : 349-354.
  • 8Hill R. Elastic properties of reinforced solids: some theoretical principles[J]. Journal of the Mechanics and Physical of Solids,1963,11(5):357-372.
  • 9Hill R. A self-consistent mechanics of composite ma- terials[J]. Journal of the Mechanics and Physical of Solids, 1965,13(4) : 213-222.
  • 10Kuster G T, Toksoz M N. Velocity and attenuation of seismic waves in two-phase media[J]. Geophys ics, 1974,39(5) : 587-618.

二级参考文献23

共引文献37

同被引文献135

引证文献8

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部