摘要
本文证明了Hilbert空间上的非列紧的一般非扩张映象的Ishikawa迭代序列的收敛性。
Let C be a nonempty convex subset of a normed linear space.For,each x0∈C.the iteration sequence is called an ishikawa scheme if and {αn} {βn} satisfy (i)In this paper we have proved following theorem.Theorem Let C be a closed convex nonempty bounded subset of a Hilbert space and T;C→C a continuous generalizednonexpansive demicompact mapping with F(T) nonempty. Then, for each x0→C sequence of Ishikawa iterates converges to a fixed point of T.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
1991年第3期127-131,共5页
Journal of Beijing University of Aeronautics and Astronautics
关键词
迭代序列
收敛性
ISHIKAWA
generalizednonexpansive, convergence,sequence of Ishikawa iterates.