期刊文献+

LS-SVM稳健设计及正则化性能分析 被引量:1

A Robust Design of LS-SVM and Analysis of Regularization Performance
下载PDF
导出
摘要 LS-SVM(最小二乘支持向量机)把传统的支持向量机求解由二次规划变为求解线性方程组问题,使得在计算效率和算法设计的简单性上都有很大提高。然而,LS-SVM由于其误差函数是二次函数,对训练样本中的野值比较敏感,采用传统的LS-SVM方法,容易歪曲系统,并可能直接导致函数逼近失败。针对这一情况,基于最优化理论及稳健估计思想,提出了RLS-SVM(稳健LS-SVM)的设计方法。数值计算表明,在有野值的情况下,RLS-SVM对函数逼近具有良好的稳健性。另外,分析了正则化因子与核函数的选择对逼近性能的影响,并给出了在不同情况下的一些使用规则。 LS-SVM(Least Square Support Vector Machine) has received much attention in recent years due to its efficient and convenient algorithms that switch training process by solving a set of linear equations rather than a quadratic programming problem.However,LS-SVM regressors are not robust to outliers because of the square error function.A design of Robust LS-SVM(RLS-SVM) is proposed in this paper with a description of the algorithm that provides a solution to the problem.Numerical computation results indicate that RLS-SVM exerts robust performance in presence of outliers in training data.Regularization factors and kernel functions on approximation performance are also analyzed and rules on how to make choices are given.
出处 《飞行器测控学报》 2012年第6期80-85,共6页 Journal of Spacecraft TT&C Technology
基金 国家自然科学基金(No.11073047 No.11173049) 上海市导航实验室开放课题(No.Y224353002) 上海市科学技术委员会(No.06DZ22101)
关键词 最小二乘支持向量机(LS-SVM) 稳健性 正则化 最优化 函数逼近 Least Square Support Vector Machine(LS-SVM) robust regularization optimization approximation
  • 相关文献

参考文献10

  • 1Vapnik V N.Statistical Learning Theory[M] .New York:John Wiley & Sons,Inc,1998:194-216.
  • 2Vapnik V N.The Nature of Statistical Learning Theory[M] .2nd ed.New York:Springer,1999:194-216.
  • 3Press W H,Teukolsky S A,Vetterling W T,et al.Numerical Recipes[M] .3rd ed.New York:Cambridge University Press,2007:883-898.
  • 4Hastie T,Tibshirani R,Friedman J.The Elements of Statistical Learning Data Mining,Inference,and Prediction[M] .2nd ed.New York:Springer,2008:417-455.
  • 5Haykin S.Neural Networks and Learning Machines[M] .3rd ed.New York:Person Education,Inc.,2009:269-312.
  • 6Theodoridis S,Koutroumbas K.Pattern Recognition[M] .4th ed.San Diego:Academic Press,2008:198-215.
  • 7Bishop C M.Pattern Recognition and Machine Learning[M] .New York:Springer,2006:338-356.
  • 8Abe S.Support Vector Machines for Pattern Classification[M] .2nd ed.New York:Springer,2010:432-435.
  • 9贾沛璋,吴连大.初轨的稳健估计算法[J].天文学报,2000,41(2):123-128. 被引量:6
  • 10周江文,黄幼才,杨元喜,欧吉坤.抗差最小二乘估计[M].武汉:华中理工大学出版社,1997.

二级参考文献1

共引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部