期刊文献+

线性模型中回归系数和误差方差同时的经验Bayes估计及其优良性 被引量:1

The Superiorities of Simultaneous Empirical Bayes Estimation for the Regression Coefficients and Error-Variance in Linear Model
下载PDF
导出
摘要 在线性模型中,当先验分布中超参数部分未知时,构造了回归系数和误差方差的同时参数型经验Bayes估计(PEBE).在均方误差矩阵(MSEM)准则下,讨论了回归系数的PEBE相对于最小二乘估计(LSE)的优良性;在均方误差(MSE)准则下讨论了误差方差的PEBE相对于其LSE的优良性.当先验分布中超参数全部未知时,重新构造了回归系数和误差方差的同时PEBE,并给出了它们在MSE准则下相对LSE优良性的模拟结果. When the hyperparameters of prior distribution are partly known in linear model, the simultaneous parametric empirical Bayes estimators (PEBE) of the regression coefficients and error variance are constructed. The superiority of PEBE over the least squares estimator (LSE) of regression coefficients is investigated in terms of the the mean square error matrix (MSEM) criterion, and the superiority of PEBE over LSE of the error variance is discussed under the the mean square error (MSE) criterion. Finally, when all hyperparameters are unknown, the PEBE of regression coefficients and error variance are reconstructed and the superiority of them over LSE under the MSE criterion are studied by simulation methods.
作者 陈玲 韦来生
出处 《应用概率统计》 CSCD 北大核心 2012年第6期583-600,共18页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金(11071232,11171001) 安徽大学青年科研基金(2010KJQN1002) 安徽大学博士科研启动经费(023033190168)资助
关键词 线性模型 参数型经验Bayes估计 最小二乘估计 均方误差(矩阵)准则 模拟结果 Linear model, parametric empirical Bayes estimation, least squares estimation, mean square error (matrix) criterion, simulation results.
  • 相关文献

参考文献13

  • 1Box, G.P,Tiao, G.C. Bayesian Inference in Statistical Analysis[M].Massachusetts:Addison-Wesley Press,1973.
  • 2王松桂.线性模型的理论及其应用[M]合肥:安徽教育出版社,1987.
  • 3Broemeling, L.D. Bayesian Analysis of Linear Models[M].New York,USA:Marcel Dekker,Inc,1985.
  • 4Wei, L.S,Zhang, W.P. The superiorities of Bayes linear minimum risk estimation in linear model[J].Communications in Statistics-Theory and Methods,2007.917–926.
  • 5Kotz, S,Nadarajah, S. Multivariate t Distributions and Their Applications[M].Cambridge:Cambridge University Press,2004.
  • 6Robbins H. An empirical Bayes approach to statistics[J].Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability,1955.157–163.
  • 7Morris, C.N. Parametric empirical Bayes inference: theory and applications[J].Journal of the American Statistical Association,1983.47–55.
  • 8Ghosh, M,Saleh, A.K.Md.E,Sen, P.K. Empirical Bayes subset estimation in regression models[J].Statistics and Decisions,1989.15–35.
  • 9Wei, L.S,Trenkler, G. Mean square error matrix superiority of empirical Bayes estimators under misspecification[J].Test,1995.187–205.
  • 10Zhang, W.P,Wei, L.S,Yang, Y.N. The superiority of empirical Bayes estimator of parameters in linear model[J].Statistics & Probability Letters,2005.43–50.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部