期刊文献+

部分线性模型的Adaptive LASSO变量选择 被引量:4

Variable Selection for Partially Linear Models via Adaptive LASSO
下载PDF
导出
摘要 部分线性模型是一类常用的半参数统计模型,本文对部分线性模型的adaptive LASSO参数估计及变量选择方法进行了研究.首先结合截面最小二乘思想和adaptive LASSO估计方法,构造了adaptive LASSO惩罚截面最小二乘估计,并研究了惩罚参数和窗宽的选择问题.理论上研究了在一定条件下估计量的相合性和渐近正态性,证明adaptive LASSO估计具有oracle性质.该估计方法便于计算.最后通过模拟研究了估计量的小样本性质,结果表明变量选择和参数估计效果良好. Partially linear model is a class of commonly used semiparametric models, this paper focus on variable selection and parameter estimation for partially linear models via adaptive LASSO method. Firstly, based on profile least squares and adaptive LASSO method, the adaptive LASSO estimator for partially linear models are constructed, and the selections of penalty parameter and bandwidth are discussed. Under some regular conditions, the consistency and asymptotic normality for the estimator are investigated, and it is proved that the adaptive LASSO estimator has the oracle properties. The proposed method can be easily implemented. Finally a Monte Carlo simulation study is conducted to assess the finite sample performance of the proposed variable selection procedure, results show the adaptive LASSO estimator behaves well.
出处 《应用概率统计》 CSCD 北大核心 2012年第6期614-624,共11页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金(11101014) 高等学校博士学科点专项科研基金联合资助课题(20101103120016) 北京市属高等学校人才强教深化计划"中青年骨干人才培养计划"项目(PHR20110822) 北京市优秀人才培养资助项目(2010D005015000002) 北京工业大学基础研究基金项目(X4006013201101)资助
关键词 部分线性模型 变量选择 渐近分布 LASSO “adaptive LASSO” Partially linear models, variable selection, asymptotic distribution, LASSO, adaptive LASSO.
  • 相关文献

参考文献1

  • 1Wang, H,Li, R,Tsai, C. Tuning parameter selectors for the smoothly clipped absolute deviation method[J].Biometrika,2007.553–568.

同被引文献16

  • 1ENGLE R F, GRAGER C W J, RICE L, et al. Semi parametric estimates of the relation between weather and electricity sales [J]. J Amer Statist Assoc, 1986, 81: 310-320.
  • 2HARDLE W, LIANG H, GAO J T. Partially Linear Models [M]. Heidelberg: Springer, 2000: 131-150.
  • 3XUE L G, ZHU L Z. Empirical likelihood semi parametric regression analysis for longitudinal data[J]. Biometrika, 2007, 94: 921-937.
  • 4FRANK 1, FRIEDMAN J. A statistical view Of some chemometrics regression tools with discussion) [J]. Tech.nometrics , 1993, 35: 109- 148.
  • 5TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. J R Stat Soc: Ser B, 1996, 58: 267-288.
  • 6ZOU H. The adaptive lasso and its oracle properties[J]. J Amer Statist Assoc, 2006, 101: 1418-1429.
  • 7YUAN M, LIN Y. Model selection and estimation in regression with grouped variables [J]. J R Stat Soc(SerB), 2005,68: 49-67.
  • 8WANG H S, LENG C L. A note on adaptive group lasso [J]. Com put Statist Data Anal, 2008, 52: 5277-5286.
  • 9LI R Z, LIANG H. Variable selection In semi parametric regression modeling[J]. Ann Statist, 2008, 36: 261-286.
  • 10LIANG H. LI R Z. Variable selection for partially linear models with measurement errors[J]. J Amer Statist Assoc, 2009, 104: 234-248.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部