期刊文献+

平面曲线切割函数的一阶和二阶导数

First and Second Derivative of Tangent and Secant Function of Plane Curve
下载PDF
导出
摘要 使用几何分析的方法,构造了两组形式计算公式,并使用其计算了平面曲线的切割函数的一阶导数和二阶导数的表达式,讨论了这两个导数在间断点处的极限情况,得到的结果:给其补充上合适的值之后,切割函数的一阶导数和二阶导数就处处连续了。 By geometry analysis,two groups of formal computation formula are constructed and the first and second derivative expressions of the tangent and secant function are calculated.The limits of the discontinuity points of the tangent and secant function of plane curve are discussed obtaining a result:if given the proper value,the first and second derivatives of the tangent and secant function are continuous everywhere.
出处 《河北北方学院学报(自然科学版)》 2012年第6期12-16,共5页 Journal of Hebei North University:Natural Science Edition
关键词 切割函数 一阶导数 二阶导数 tangent and secant function first derivative second derivative
  • 相关文献

参考文献6

二级参考文献31

  • 1Blum H. Biological shape and visual science [J]. J Theoret Biol, 1973, 38:205-287.
  • 2Brady M. Criteria for representations of shape [M]. New York: Academic Press, 1983:23-34.
  • 3Bruce M, Giblin PJ, Gibson CG. Symmetry set[J].Proc Royal Soc, 1985, 101A: 163-186.
  • 4Giblin PJ, Brassett SA. Local symmetry of plane curves [J]. Amer Math Monthly, 1985, 92:689-707.
  • 5Peter J, Gibin, Donal BO. The Bitangent Sphere Problem [J]. Amer Math Monthly, 1990, 97:5-23.
  • 6John WR. Geometry of Curves [M]. Orange: Chapman and Hall/CRC, 1935:56-231.
  • 7Gelman A, Carlin JB, Stern HS, et al. Bayesian Data Analysis (2nd Edition) [M]. Orange: Chapman HalI/CRC. 2004 :45-67.
  • 8Blum H. Biological shape and visual science[J].J Theoret Biol, 1973, 38:205-287.
  • 9Brady M. Criteria for representations of shape [M]. New York: Academic Press, 1983. 23-34.
  • 10Bruce M, Giblin PJ, Gibson CG. Symmetry set[J]. Proc Royal Soc 1985, 101A: 163-186.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部