期刊文献+

自适应SCKF在高动态COMPASS信号参数估计中的应用 被引量:5

Application of Adaptive SCKF in Parameters Estimation of High Dynamic COMPASS Signal
下载PDF
导出
摘要 高动态环境下北斗二号导航信号具有较高的非线性特性,载波参数估计难以保证较高的精度。在分析高阶非线性载波模型的基础上,提出了一种基于平方根容积卡尔曼滤波(SCKF)的自适应滤波算法,对载波相位及其三阶导数进行估计。该算法使用容积数值积分原则直接计算非线性随机函数的均值和方差,且在迭代滤波过程中,利用移动窗口法通过最新量测信息来改进过程噪声和量测噪声的协方差阵,可获得较高的估计精度。仿真结果表明,相比EKF和SCKF,本文提出的方法具有更高的估计精度和更快的收敛速度。 Due to the strong nonlinear characteristics of COMPASS signal under highly dynamic circumstances,the high accuracy parameter estimation is hard to be achieved.Based on the analysis of the high-order nonlinear carrier model,an adaptive square-root cubature Kalman filter algorithm(SCKF) is proposed to estimate the phase and its three-order derivatives.In the SCKF algorithm,cubature rule based on numerical integration method is directly used to calculate the mean and covariance of the nonlinear random function.By shifting the window,the latest measurement information in the process of recursion and filtering is used to improve the cross-covariance of noises,so the higher accuracy of state estimation can be achieved.The simulation results indicate that the higher accuracy and faster convergence are obtained compared with EKF and SCKF.
出处 《宇航学报》 EI CAS CSCD 北大核心 2013年第2期201-206,共6页 Journal of Astronautics
基金 国家自然科学基金(61201120)
关键词 高动态 北斗二号系统 平方根容积卡尔曼滤波 自适应估计 参数估计 High dynamic COMPASS SCKF Adaptive estimation Parameters estimation
  • 相关文献

参考文献13

二级参考文献43

  • 1左启耀,袁洪,林宝军.高动态环境下GPS信号跟踪环路优化算法研究[J].宇航学报,2008,29(2):550-555. 被引量:16
  • 2邓方林,梁勇.北斗/罗兰C组合导航系统研究[J].宇航学报,2005,26(3):287-290. 被引量:20
  • 3胡辉.高动态数字化GPS接收机的研制[R].哈尔滨:哈尔滨工业大学.2002
  • 4李金海,巴晓辉,SHERAZ Anjum,陈杰.基于自适应锁相环的高动态GPS信号载波跟踪算法[J].电子器件,2007,30(4):1440-1443. 被引量:4
  • 5FENG Y, LIB. A Benefit of Multiple Carrier GNSS Signals: Regional Scale Network-based RTK with Doubled Inter station Distances[J]. Spatial Science, 2008, 53(2) 135-147.
  • 6FENG Y, RIZOS C, HIGGINS M, et al. Developing Regional Precise Positioning Services Using the Current and Future GNSS Receivers[C]// Proceedings of Spatial Sciences Institute Biennial International Conference, Adelaide: [s. n. ],2009.
  • 7China Satellite Navigation Project Center. Compass/Beidou Navigation Satellite System Development [R]. Beijing: CSNPC, 2009.
  • 8GRELIER T, DANTEPAL J, DELATOUR A, et al. Initial Observations and Analysis of Compass MEO Satellite Signals[J]. Inside GNSS, 2007(5/7) :39-43.
  • 9FENG Y. GNSS Three Carrier Ambiguity Resolution Using Ionosphere-reduced Virtual Signals[J]. Journal of Geodesy, 2008, 82(12): 847-862.
  • 10YANG Y, TANG Y, CHEN C, et al. Integrated Adjustment of Chinese 2000' GPS Control Network[J]. Survey Review, 2009, 41(313): 226-237.

共引文献996

同被引文献92

  • 1吴仲城,孟明,申飞,戈瑜.一体化结构六维加速度传感器设计[J].仪器仪表学报,2004,25(z1):302-303. 被引量:11
  • 2郭才发,赵星,蔡洪.有色噪声作用下的INS/地磁组合导航算法研究[J].飞行器测控学报,2010,29(4):84-88. 被引量:2
  • 3康莉,谢维信,黄敬雄.基于unscented粒子滤波的红外弱小目标跟踪[J].系统工程与电子技术,2007,29(1):1-4. 被引量:9
  • 4马野,王孝通,李博,傅建国.舰船导航信号非线性UKF滤波定位解算方法研究[J].兵工学报,2007,28(5):539-542. 被引量:6
  • 5LI G L, SUN F M, CHENG N. Performance analysis of UKF for nonlinear problems[C]. Third International Symposium on Intelligent Information Technology Application, 2009:209-212.
  • 6KAZUFUMI I, XIONG K Q. Gaussian filters for non- linear filtering problems[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927.
  • 7IENKARAN A, SIMON H. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
  • 8LIU S L, XU T Y. Algorithm of 3-D single observer passive location with the extended Kalman particle filter[C]. 1st International Conference on Information Science and Engineering, 2009: 4704-4707.
  • 9JAYESH H K, PETAR M D. Gaussian sum particle filtering for dynamic state space models[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2001: 3465-3468.
  • 10Li T H S, Chen C C, Su Y T. Optical image stabilizing system using fuzzy sliding-mode controller for digital cameras [ J ] . IEEE Transactions on Consumer Electronics, 2012,58 (2) : 237 - 245.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部