期刊文献+

基于功率估计的方位数据关联算法 被引量:1

Direction-Data Association Algorithm Based on Power Estimation
下载PDF
导出
摘要 将功率信息与电波传播相关理论引入到测向交叉定位的数据关联问题中,提出一种基于功率估计的方位数据关联算法。推导了阵列协方差矩阵中信号功率与阵列流型之间的关系,利用空间协方差逆矩阵高阶幂逼近噪声子空间的方法,在已知阵列流型的基础上准确获取各目标的功率参数,避免了幅值特征类关联算法易受噪声与信号波形影响的问题;根据功率和传播路径的衰减关系,构造方位组合与功率信息的关联置信度函数,挑选出正确的关联组合。仿真结果表明了算法的有效性和优越性。 The power information and the theory of radio propagation are introduced to the direction data association in passive cross location system,a novel data association algorithm based on received signal power estimation is proposed.The relationship between array manifold and received signal strength of covariance matrix estimation is derived.The high order power of inverse spatial covariance matrix is used to approximate the signal subspace,and the received signal power is obtained under the condition of known signal directions,thus avoiding the amplitude-attribute data association algorithm's disadvantage caused by the uncertainty noise and signal wave.The confidence level of each cross location is computed by using the relationship between the received power and the propagation decay.Through this way,the correct association is selected from the set of candidates.The simulation results confirm feasibility and superiority of the proposed method.
出处 《宇航学报》 EI CAS CSCD 北大核心 2013年第2期270-277,共8页 Journal of Astronautics
基金 国家自然科学基金(60972161)
关键词 目标定位 数据关联 接收信号功率 关联置信度 Target location Data association Received signal power Confidence of association
  • 相关文献

参考文献20

  • 1Bu H W,Hon T H,Mook S L. Decoupled 2-D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling[J].IEEE Transactions on Antennas and Propagation,2010,(03):747-755.
  • 2Zhong X H,Premkumar A B,Madhukumar A S. Particle filtering and posterior Cramér-Rao bound for 2-D direction of arrival tracking using an acoustic vector sensor[J].IEEE Sensors Journal,2012,(02):363-377.
  • 3Liu Z M,Huang Z T,Zhou Y Y. Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation[J].IEEE Transactions on Signal Processing,2011,(09):4256-4270.
  • 4Chai L G;Sheng H J;Dai D C.An improved algorithm for eliminating false-localization targets in multi-stations' crosslocation[A]广东深圳,2011.
  • 5Chen S L,Xu Y B. A new joint possibility data association algorithm avoiding track coalescence[J].International Journal of Intelligent Systems aud Applications,2011,(02):45-51.
  • 6辛云宏,杨万海.被动多站多目标的测量数据关联算法研究[J].宇航学报,2005,26(6):748-752. 被引量:24
  • 7田野,姬红兵,欧阳成.基于角度余切值的多被动传感器数据关联[J].电子与信息学报,2010,32(10):2331-2335. 被引量:10
  • 8Oh S,Russell S,Sastry S. Markov chain Monte Carlo data association for multi-target tracking[J].IEEE Transactions on Automatic Control,2009,(03):481-497.
  • 9章飞,周杏鹏,陈小惠.基于幅值信息的联合概率数据关联粒子滤波算法[J].系统工程与电子技术,2011,33(2):453-457. 被引量:11
  • 10Song T L. Most probable data association with distance and amplitude information for target tracking in clutter[A].Seoul,Korea,2008.

二级参考文献65

共引文献57

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部