期刊文献+

学习相位一致特征的无参考图像质量评价 被引量:21

No-reference Image Quality Assessment with Learning Phase Congruency Feature
下载PDF
导出
摘要 为了有效地评价不同失真类型的图像质量,该文提出一种利用广义回归神经网络(GRNN)学习图像相位一致特征的无参考评价方法。该方法首先使用相位一致模型产生相位一致图像、相位一致协方差最大、最小图像,然后利用灰度-梯度共生矩阵模型计算该3幅图像的梯度熵、原始图像的梯度均值和梯度熵,再加上该3幅图像的均值,共8个特征输入GRNN模型训练学习,预测得到图像质量评价得分。实验结果表明新方法与主观得分有较好的一致性,同时具有可靠的推广性。 In order to assess multi distorted types of image quality effectively, a new no reference image quality assessment method is proposed, which uses General Regression Neural Network (GRNN) model to predict image quality score by learning phase congruency feature. In this method, three images, namely the Phase Congruency (PC) image, the maximum moment of PC covariance and the minimum moment of PC covariance image, are produced by the phase congruency model. Secondly the gradient entropy of the three reproduced images, the gradient mean value and the gradient entropy of the original image are computed by gray-level gradient co-occurrence matrix model, and the mean value of the three images are also calculated. At last all above eight features are fed to GRNN to learn, and predict image quality score. Experimental results demonstrate our algorithm is more consistent with human subjective scores and moreover has credible generalization.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第2期484-488,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61170120) 江苏省自然科学基金(BK2011147) 中国博士后科学基金(2011M500431)资助课题
关键词 图像处理 无参考图像质量评价 相位一致 灰度-梯度共生矩阵 广义回归神经网络 Image processing No-reference image quality assessment Phase congruency Gray-level gradient co- occurrence matrix General Regression Neural Network (GRNN)
  • 相关文献

参考文献10

  • 1Tang H,Joshi N,Kapoor A. Learning a blind measure of perceptual image quality[A].Colorado Springs,USA,2011.305-312.
  • 2Saad M A,Bovik A C,Charrier C. A DCT statistics-based blind image quality index[J].IEEE Transactions on Signal Processing,2010,(06):583-586.
  • 3Saad M A,Bovik A C,Charrier C. DCT statistics model-based blind image quality assessment[A].Brussels,Belgium,2011.3093-3096.
  • 4Moorthy A K,Bovik A C. A two-step framework for constructing blind image quality indices[J].IEEE Signal Processing Letters,2010,(05):513-516.
  • 5Moorthy A K,Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J].IEEE Transactions on Image Processing,2011,(12):3350-3364.
  • 6Li C,Bovik A C,Wu X. Blind image quality assessment using a general regression neural network[J].IEEE Transactions on Neural Networks,2011,(05):793-799.
  • 7Morrone M C,Owens R A. Feature detection from local energy[J].Pattern Recognition Letters,1987,(05):303-313.
  • 8Kovesi P. Image features from phase congruency[J].Journal of Comput Vision and Pattern Recognition,1999,(03):1-26.
  • 9Sheikh H R,Wang Zhou,Cormack L. LIVE image quality assessment database release 2[DB/OL].http://live.ece.utexas.edu/research/quality,2007.
  • 10Lukin N P V,Zelensky A,Carli M. Tid2008-a database for evaluation of full reference visual quality assessment metrics[J].Advances of Modern Radioelectronics,2009,(05):30-45.

同被引文献237

引证文献21

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部