期刊文献+

MUF/橡实果壳复合轻型材料的制备与增强改性

Preparation and Reinforced Modification of MUF/Acorn-Hull Light-Weighted Composites
下载PDF
导出
摘要 以可发性三聚氰胺改性脲醛树脂(MUF)为基体原料,采用共发泡技术制备了MUF/橡实果壳复合轻型材料,并对其力学性能、阻燃性能和易碎性能进行了分析。结果表明,随着橡实果壳质量分数的增加,复合轻型材料的阻燃性能略微提高,但其力学性能和易碎性能大大降低。为改善复合轻型材料的综合性能,研究了J–100型交联改性剂对其综合性能的影响。研究发现,加入J–100型交联改性剂能大大改善复合轻型材料的力学性能和易碎性能,当加入纯MUF固含量1%的J–100型交联改性剂时,与未加入时相比,复合轻型材料的压缩强度提高10倍多,弯曲强度提高6倍,其易碎性能亦大大降低,阻燃性能亦略微有所提高。改性MUF/橡实果壳复合轻型材料具有优异的综合性能并可取代传统的轻质化材料。 Melamine-urea-formatdehyde(MUF) / acorn-hull light-weighted composites were prepared via a co-foaming technique using MUF resin as matrix material. The mechanical, flame-retardant properties and friability of light-weighted composites were investigated. The results show that their flame-retardant properties slightly increase with mass fraction of acorn-hull increasing, while the mechanical properties and friability decrease greatly. Thus J-100 crosslinking modifying agent is added into pre-foaming system in order to improve their comprehensive properties, the results display that it can significantly improve the mechanical properties and friability, and compressive strength of the composite enhance more than 10 times and bending strength enhance 6 times comparing with that of the composite without modification when J-100 crosslinking modifying agent centent is 1% of the pure MUF solids mass, their friability also decreased greatly, moreover, the flame-retardant properties slightly improve, The MUF / acorn-hull light-weighted composites have excellent properties enough to replace the conventional light-weighted materials.
出处 《工程塑料应用》 CAS CSCD 北大核心 2013年第2期10-15,共6页 Engineering Plastics Application
基金 国家科技支撑计划课题"林木资源化学深加工关键技术研究及示范"(2012BAD24B04)
关键词 橡实果壳 三聚氰胺改性脲醛树脂 共发泡技术 轻型材料 增强改性 acorn-hull melamine-urea-formaldehyde co-foaming technique light-weighted material reinforcedmodification
  • 相关文献

参考文献12

  • 1谢碧霞,谢涛.我国橡实资源的开发利用[J].中南林业科技大学学报,2002,26(3):37-41. 被引量:71
  • 2Lee J W, Ha M G, Yi Y B, et al. Chromium halides mediated production of hydroxymethylfurfural from starch-rich acorn biomass in an acidic ionic liquid[J]. Carbohydrate Research, 2011, 346(2): 177-182.
  • 3Lu Zhengdong, He Feng, Shi Yue, et al. Fermentative production of L(+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients[J]. Bioresource Technology, 2010,101(10):3 642-3 648.
  • 4Li Shouhai, Wang Chunpeng, Zhuang Xiaowei, et al. Renewable resource-based composites of acorn powder and polylactide bioplastic:preparation and properties evaluation[J], Journal of Polymer and Environment, 2011,19(1):301-311.
  • 5Burteau A, N' Guyen F, Bartout J D, et al. Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams[J]. International Journal of Solids and Structures,2012,49(19-20):2 714-2 732.
  • 6Pires-Cabral P, Da Fonseca M M R, Ferreira-Dias S. Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate[J]. Biochemical Engineering Journal,2010,48(2):246- 252.
  • 7Armin A, Klaus H, Christof M, et al. Antimicrobially modified melamine / formaldehyde foam: EP, 20080717323 [P].2008-03-03.
  • 8Wang Yanbing, Sotzing G A, Weiss R A. Sorption of iodine by polyurethane and melamine-formaldehyde foams using iodine sublimation and iodine solutions[J]. Polymer, 2006,47(8):2 728-2 740.
  • 9Kim J, Lee J H, Song T H. Vacuum insulation properties of phenolic foam[J]. International Journal of Heat and Mass Transfer, 2012,55(19-20):5 343-5 349.
  • 10Del Saz-Orozco B, Oliet M, Alonso M V, et al. Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach[J]. Composites Science and Technology, 2012,72(6):667-674.

二级参考文献10

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部