期刊文献+

求解不等式约束优化问题无严格互补松弛条件的QP-Free新算法 被引量:1

A New QP-Free Algorithm for Inequality Constrained Optimization without Strict Complementarity
原文传递
导出
摘要 本文针对不等式约束优化问题,结合Facchinei-Fischer-Kanzow精确有效集识别技术,给出一个新的线性方程组与辅助方向相结合的可行下降算法.算法每步迭代只需求解一个降维的线性方程组或计算一次辅助方向,且获取辅助方向的投影矩阵只涉及近似有效约束集中的元素,问题规模大为减少,且当迭代次数充分大时,只需求解一个降维的线性方程组.无需严格互补松弛条件,算法全局且一步超线性收敛. In this paper, based on the Facchinei-Fischer-Kanzow active set identification technique, a new QP-Free Mgorithm is proposed for solving inequality constrained optimiza- tion problem. At each iteration, an auxiliary direction or a system of linear equations is computed to obtain a search direction. When the iteration is sufficiently large, only a sys- tem of linear equations is solved. In particular, the auxiliary direction is obtained by using a reduced matrix, the scale of which is much smaller than that of the Generalized Projec- tion Gradient matrix. Without strict complementarity, the new algorithm is proved to be globally convergent with a superlinear convergence rate under assumptions milder than the strong second order sufficient condition.
出处 《应用数学学报》 CSCD 北大核心 2013年第1期1-13,共13页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10971122 11101420) 山东省自然科学基金(Y2008A01) 山东省博士基金(2010BSE06047) 高等学校博士点专项科研基金(20093718110005)资助项目
关键词 不等式约束优化 SQP算法 QP-Free算法 广义投影梯度 全局收敛性 超线性收敛性 inequality constrained optimization SQP Method QP-Free method generalized projection gradient global convergence superlinear convergence
  • 相关文献

参考文献3

二级参考文献13

  • 1张可村,杨波艇.一般广义几何规划问题的一种有效数值方法[J].计算数学,1994,16(2):158-169. 被引量:11
  • 2简金宝.非线性最优化一个超线收敛的可行下降算法[J].数学杂志,1995,15(3):319-326. 被引量:8
  • 3高自友,吴方.非线性约束条件下的SQP可行方法[J].应用数学学报,1995,18(4):579-590. 被引量:13
  • 4J. F. A. De O. Pantoja,D. Q. Mayne. Exact penalty function algorithm with simple updating of the penalty parameter[J] 1991,Journal of Optimization Theory and Applications(3):441~467
  • 5J. V. Burke,S-P. Han. A robust sequential quadratic programming method[J] 1989,Mathematical Programming(1-3):277~303
  • 6Masao Fukushima. A successive quadratic programming algorithm with global and superlinear convergence properties[J] 1986,Mathematical Programming(3):253~264
  • 7Kaoru Tone. Revisions of constraint approximations in the successive QP method for nonlinear programming problems[J] 1983,Mathematical Programming(2):144~152
  • 8Klaus Schittkowski. The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function[J] 1982,Numerische Mathematik(1):83~114
  • 9S. P. Han. A globally convergent method for nonlinear programming[J] 1977,Journal of Optimization Theory and Applications(3):297~309
  • 10Shih-Ping Han. Superlinearly convergent variable metric algorithms for general nonlinear programming problems[J] 1976,Mathematical Programming(1):263~282

共引文献30

同被引文献9

  • 1赵志宏,孙守增.基于BP神经网络的稿件质量评价系统[J].中国科技期刊研究,2006,17(5):742-745. 被引量:2
  • 2Tseng P, Yun S W. A coordinate gradient descent method for nonsmooth separable minimization[J]. MathematicalProgramming, 2009,(117):387–423.
  • 3Thomas S, Zanni L. On the working set selection in gradient projection-based decomposition techniques for supportvector machines[J]. Optimization Methods and Software, 2005,(20):583–596.
  • 4Lin C J, Lucidi S, Palagil L, et al. Decomposition algorithm model for singlylinearly constrained problems subject tolower and upper bounds[J]. Journal of Optimization Theory and Application, 2009,(141):107-126.
  • 5Lucidi S, Palagi L, RISI A, et al. A convergent decomposition algorithm for support vector machines[J]. ComputationalOptimization and Applications, 2007,38(2):217-234.
  • 6Tseng P, Yun S W. A coordinate gradient descent method for linearly constrained smooth optimization and support vectormachines training[J]. Computational Optimization and Applications, 2010,47(2):179-206.
  • 7李明强, 韩丛英, 贺国平. 基于分解技术的并行支持向量机算法[J]. 中国科技论文在线- 精品论文,2013,6(13):1249-1254.
  • 8张新红,郑丕谔.基于神经网络的管理信息系统综合评价方法[J].系统工程学报,2002,17(5):445-450. 被引量:30
  • 9邱浪波,刘作良,刘明.一种应用神经网络技术的威胁估计算法[J].空军工程大学学报(自然科学版),2002,3(6):25-28. 被引量:25

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部