摘要
本文针对不等式约束优化问题,结合Facchinei-Fischer-Kanzow精确有效集识别技术,给出一个新的线性方程组与辅助方向相结合的可行下降算法.算法每步迭代只需求解一个降维的线性方程组或计算一次辅助方向,且获取辅助方向的投影矩阵只涉及近似有效约束集中的元素,问题规模大为减少,且当迭代次数充分大时,只需求解一个降维的线性方程组.无需严格互补松弛条件,算法全局且一步超线性收敛.
In this paper, based on the Facchinei-Fischer-Kanzow active set identification technique, a new QP-Free Mgorithm is proposed for solving inequality constrained optimiza- tion problem. At each iteration, an auxiliary direction or a system of linear equations is computed to obtain a search direction. When the iteration is sufficiently large, only a sys- tem of linear equations is solved. In particular, the auxiliary direction is obtained by using a reduced matrix, the scale of which is much smaller than that of the Generalized Projec- tion Gradient matrix. Without strict complementarity, the new algorithm is proved to be globally convergent with a superlinear convergence rate under assumptions milder than the strong second order sufficient condition.
出处
《应用数学学报》
CSCD
北大核心
2013年第1期1-13,共13页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(10971122
11101420)
山东省自然科学基金(Y2008A01)
山东省博士基金(2010BSE06047)
高等学校博士点专项科研基金(20093718110005)资助项目