期刊文献+

基于能量的自适应局部Gabor特征提取的人脸识别 被引量:4

Face recognition with adaptive local-Gabor features based on energy
下载PDF
导出
摘要 为了解决传统Gabor滤波器组在人脸识别过程中特征提取时间长、计算量大的问题,从不同方向、不同尺度以及全局角度按照能量大小构建了3种不同的局部Gabor滤波器组用来提取人脸特征。首先,分析数据库中部分图像Gabor变换后的图像能量,从不同角度选出能量较大的图像构建对应的局部Gabor滤波器组;其次,根据所选滤波器组提取局部Gabor特征;然后,采用线性判别分析(LDA)法进一步提取Fisher特征;最后,利用最近邻法识别人脸图像。基于ORL人脸库和YALE人脸库的实验结果表明提出的人脸识别方法降低了人脸图像的特征维数,缩短了特征提取的时间,有效地提高了人脸识别率。 Concerning the time-consuming and computational complexity in extracting face features of traditional Gabor filters, the face features were extracted by using three different local Gabor filters adaptively chosen by the Gabor images' energy from different directions, scales and overall situation. Firstly, the Gabor features of some images in the face database were extracted and analyzed, and the local Gabor filters were built by choosing the filters corresponding to the images with larger energy. And then, the Fisher features were extracted using Linear Discriminate Analysis (LDA) further. Finally, face recognition was realized using the nearest neighbor method. The experimental results based on ORL and YALE face database show that the proposed approach has better face recognition performance with less feature dimension and calculation time.
出处 《计算机应用》 CSCD 北大核心 2013年第3期700-703,共4页 journal of Computer Applications
基金 山东省高等学校科技计划项目(J09LG03)
关键词 人脸识别 特征提取 局部Gabor滤波器组 自适应 线性判别分析 face recognition feature extraction local-Gabor fihers adaptive Linear Discriminate Analysis (LDA)
  • 相关文献

参考文献7

二级参考文献84

共引文献110

同被引文献38

  • 1鲁广英,潘静,庞彦伟.一种新颖的基于Gabor-LDA的人脸识别方法[J].工程图学学报,2006,27(4):120-124. 被引量:5
  • 2练秋生,刘春亮.基于Gabor滤波器和LBP的分级掌纹识别[J].计算机工程与应用,2007,43(6):212-215. 被引量:13
  • 3邓洪波,金连文.一种基于局部Gabor滤波器组及PCA+LDA的人脸表情识别方法[J].中国图象图形学报,2007,12(2):322-329. 被引量:36
  • 4Laptev I, Lindeberg T. Space-time interest points[A]. Proc. of the IEEE International Conference on Computer Vision (ICCV) [C]. 2003,432-439.
  • 5Liu J G, Shah M. Learning human actions via information maximization[A]. Proc. of the iEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) [C]. 2008.1-8.
  • 6Dollar P, Rabaud V, Cottrell G. Behavior recognition via sparse spatio-temporal features[A]. Proc. of the IEEE In- ternational Workshop on Visual Surveillance and Per- formance Evaluation of Tracking and Surveillance[C]. 2005,65-72.
  • 7LI Wan-qing, ZHANG Zhen-you, LIU Zi-cheng. Action rec-ognition based on a bag of 3D points[A]. Proc. of the Computer Vision and Pattern Recognition Workshops (CVPRW) [C]. 2010,9-14.
  • 8LIN Yan-ching, HU Min-chun, CHENG Wen-hua, et al. Hu- man action recognition and retrieval using sole depth in- formation[A]. Proc. of the 20th ACM International Confer- ence on Multimedia (MM 2012)[C]. 2012,1053-1056.
  • 9Megavannan V,Agarwal B. Human action recognition us- ing depth maps[A]. Proc. of the Signal Processing and Communications (SPCOM) [C]. 2012, 1-5.
  • 10LU Xia. Human detection and action recognition using depth information by Kinect[D]. USA,Austin: The Univer- sity of Texas at Austin,2012,5.

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部