期刊文献+

基于BP神经网络的Deep Web实体识别方法 被引量:5

Method of Deep Web entities identification based on BP neural network
下载PDF
导出
摘要 针对现有实体识别方法自动化水平不高、适应性差等不足,提出一种基于反向传播(BP)神经网络的Deep Web实体识别方法。该方法将实体分块后利用反向传播神经网络的自主学习特性,将语义块相似度值作为反向传播神经网络的输入,通过训练得到正确的实体识别模型,从而实现对异构数据源的自动化实体识别。实验结果表明,所提方法的应用不仅能够减少实体识别中的人工干预,而且能够提高实体识别的效率和准确率。 To solve the problems such as low level automation and poor adaptability of current entity recognition methods, a Deep Web entity recognition method based on Back Propagation (BP) neural network was proposed in this paper. The method divided the entities into blocks first, then used the similarity of semantic blocks as the input of BY' neural network, lastly obtained a correct entity recognition model by training which was based on the autonomic learning ability of BP neural network. It can achieve entity recognition automation in heterogeneous data sources. The experimental results show that the application of the method can not only reduce manual interventions, but also improve the efficiency and the accuracy rate of entity recognition.
出处 《计算机应用》 CSCD 北大核心 2013年第3期776-779,共4页 journal of Computer Applications
基金 教育部人文社会科学研究青年基金资助项目(12YJCZH048) 辽宁省自然科学基金资助项目(20102083) 辽宁"百千万人才工程"培养经费资助项目
关键词 DEEP WEB 反向传播神经网络 实体识别 相似度 语义块 Deep Web Back Propagation (BP) neural network entities identification similarity semantic block
  • 相关文献

参考文献13

二级参考文献73

  • 1强保华,吴中福,陈凌,吴开贵,余建桥.异构数据库环境下语义集成过程的并行计算方法研究[J].计算机科学,2004,31(9):96-99. 被引量:1
  • 2于满泉,陈铁睿,许洪波.基于分块的网页信息解析器的研究与设计[J].计算机应用,2005,25(4):974-976. 被引量:55
  • 3强保华,吴中福,余建桥,陈凌,吴开贵.基于属性信息熵的实体匹配方法研究[J].计算机工程,2005,31(21):31-33. 被引量:5
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 5Hayne S,Ram Su, Multi user view integration system(MUVIS):An expert system for view integration. In: Proe. in the 6th Intl. Conf. on Data Engineering, 1990. 402-409.
  • 6Sahon G, Yang C S, Yu C T. A theory of term importance in automatic text analysis. Journal of the American Society for Information Science, 1975,26 ( 1 ) : 33 - 44.
  • 7Benkley S S, Fandozzi J E, Housman E M, et al. Data element tool-based analysis ( DELTA ) : [ Technical Report MTR95B0000147]. The MITRE Corporation, Bedford, MA, 1995.
  • 8Li W-S, Clifton C, Liu SY. Database integration using neural networks: implementation and experiences. Knowledge and Information Systems, Springer-Verlag London Ltd, 2000,2 : 73-96.
  • 9Li W S, Clifton C. Semantic integration in heterogeneous databases using neural networks. In: Proe. of the 20th VLDB Conf. Santiago, Chile, 1994.
  • 10Premerlani W J, Blaha M R. An approach for reverse engineering of relational databases. Communications of the ACM, 1994,37(5):42-49.

共引文献338

同被引文献51

  • 1韩柯,李德毅.元组统计相似性知识的提取与应用[J].计算机研究与发展,1997,34(S1):312-316. 被引量:3
  • 2姚天顺,张俐,高竹.WordNet综述[J].语言文字应用,2001(1):27-32. 被引量:33
  • 3袁志勇,查桂峰,陈绵云.基于聚类的二级模糊综合评判的车型识别研究[J].计算机工程与应用,2005,41(12):202-205. 被引量:2
  • 4强保华,陈凌,余建桥,吴开贵,吴中福.基于BP神经网络的属性匹配方法研究[J].计算机科学,2006,33(1):249-251. 被引量:4
  • 5武妍,王守觉.基于多层感知机和RBF转换函数的混合神经网络[J].计算机工程,2006,32(6):25-27. 被引量:2
  • 6Rui Zhang,ZongBen Xu, GuangBin Huang,et al. Global Convergence of Online BP Training With Dynamic Learning Rate[ J ]. Neural Net- wol:ks and Learning Systems, IEEE Transactions on, 2012,23 ( 2 ) : 330 - 341.
  • 7Fernandez Delgado M, Ribeiro J, Cernadas E, et al. Fast weight calcu- lation for kernel-based perceptron in two-class classification problems : Neural Networks ( IJCNN ) [ C ]. The 2010 International Joint Confer- ence on,2010:1098-7576.
  • 8Ho C Y F, Ling B W K, Iu H H C. Invariant Set of Weight of Percep- tron Trained by Perceptron Training Algorithm [ J ]. Systems, Man, and Cybernetics,2010 ,40 (6) : 1521 - 1530.
  • 9Peijian J, Wei S, Dizhi Z. An enhanced cooperative MAC protocol based on perceptron training [ C ]. Wireless Communications and Net- working Conference ( WCNC), 2013 IEEE ,2013,404 - 409.
  • 10Krenel U. Pairwise. Classification and support vector machines [ C ] // Bernhard Scholkopf, Christopher J. C. Burges, Alexander J. Smola. Advances in kernel methods:support vector learning. Cambridge: The MIT Press, 1999:255 - 268.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部