期刊文献+

基于混沌理论的动态种群萤火虫算法 被引量:69

Chaos-based dynamic population firefly algorithm
下载PDF
导出
摘要 针对萤火虫算法在全局寻优搜索中收敛速度慢、求解精度低,易陷入局部极值区域等缺陷,提出一种基于混沌理论的动态种群萤火虫算法。首先,该算法采用立方映射产生的混沌序列对萤火虫位置进行初始化,为全局搜索的多样性奠定基础;其次,通过对种群的动态监测,每当算法满足预设条件时,基于混沌序列生成部分新的个体,以提高算法的收敛速度;最后,对每一代产生的全局最优解,适时采用高斯扰动进行变异操作,使算法更具有跳出局部极小的能力。通过对6个复杂Benchmark函数进行测试,实验结果表明,该算法提高了全局搜索能力、收敛速度和解的精度。 The Firefly Algorithm (FA) has a few disadvantages in the global searching, including slow convergence speed, low solving precision and high possibility of being trapped in local optimum. A FA based on chaotic dynamic population was proposed. Firstly, chaotic sequence generated by cube map was used to initiate individual position, which strengthened the diversity of global searching; secondly, through dynamic monitoring of population, whenever the algorithm meets the preset condition, the new population individuals were generated using chaotic sequences, thus effectively improving convergence speed; thirdly, a Gaussian disturbance would be given on the global optimum of each generation, thus the algorithm could effectively jump out of local minima. Based on six complex test functions, the test results show that chaos- based dynamic population FA improves the capacity of global searching optimal solution, convergence speed and computational precision of solution.
出处 《计算机应用》 CSCD 北大核心 2013年第3期796-799,805,共5页 journal of Computer Applications
基金 河北省高等学校科学技术研究项目(Z2011143) 河北省科学技术研究与发展计划项目(11213593) 河北省自然科学基金资助项目(F2012208016) 河北省高等学校科学研究项目(Q2012153)
关键词 萤火虫算法 混沌 立方映射 函数优化 Firefly Algorithm (FA) chaos cube mapping function optimization
  • 相关文献

参考文献12

  • 1YANG X S. Firefly algorithms for multimodal optimization[A].Beilin:Springer-Verlag,2009.169-178.
  • 2LUKASIK S,ZAK S. Firefly algorithm for continuous constrained optimization tasks[A].Berlin:Springer-Verlag,2009.97-100.
  • 3YANG X S. Firefly algorithm,stochastic test functions and design optimisafion[J].International Journal of Bio-lnspired Computation,2010,(02):78-84.
  • 4YANG X S. Firefly algorithm,Lévy flights and global optimization[M].Berlin:Springer-Verlag,2010.209-218.
  • 5APOSTOLOPOULOS T,VLACHOS A. Application of the firefly algorithm for solving the economic emissions load dispatch problem[J].International Journal of Combinatorics,2011.ArticleID523806.
  • 6CHAI-EAD N,AUNGKULANON P,LUANGPAIBOON P. Bees and firefly algorithms for noisy non-linear optimisation problems[A].Hongkong:[s.n.],2011.2.
  • 7刘长平,叶春明.一种新颖的仿生群智能优化算法:萤火虫算法[J].计算机应用研究,2011,28(9):3295-3297. 被引量:163
  • 8胥小波,郑康锋,李丹,武斌,杨义先.新的混沌粒子群优化算法[J].通信学报,2012,33(1):24-30. 被引量:126
  • 9王凌;刘波.微粒群优化与调度算法[M]北京:清华大学出版社,200838-39.
  • 10王翔,李志勇,许国艺,王艳.基于混沌局部搜索算子的人工蜂群算法[J].计算机应用,2012,32(4):1033-1036. 被引量:33

二级参考文献66

共引文献362

同被引文献533

引证文献69

二级引证文献370

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部