期刊文献+

基于反馈策略的引力搜索算法及其在支持向量机中应用 被引量:2

Gravitational search algorithm based on feedback mechanism and its application in SVM
下载PDF
导出
摘要 针对标准引力搜索算法(SGSA)在高维多峰函数寻优过程中容易出现早熟的问题,提出一种基于反馈策略的引力搜索算法(FGSA)。由于粒子在进化过程中群体多样性损失过快,采用粒子与最佳位置的距离和最邻近粒子的距离两个参数来均衡优化算法的勘探和开发能力,并将变异操作引入到FGSA中。通过对选取的四个基准函数测试,验证了FGSA和SGSA相比,在高维多峰函数寻优时,精确度和稳定性都有显著提高。同时,针对支持向量机(SVM)分类问题时,可有效地找出合适的特征子集及SVM参数,并取得较好的分类结果。 To overcome premature problem of high-dimensional muhimodal function in the optimization process by Standard Gravitational Search Algorithm (SGSA), a new Gravitational Search Algorithm based on Feedback mechanism (FGSA) was proposed. Considering the large loss in population diversity during the evolution process, the distance to the optimum position and the distance to its nearest neighbor were introduced into the proposed algorithm to balance the trade-off between exploration and exploitation ability. Mutation operation was also embedded into FGSA. The test results of four benchmark functions demonstrate that FGSA has much better stability and accuracy than SGSA in finding global optimum. Furthermore, when FGSA is applied to Support Vector Machine (SVM) classification, suitable feature subsets and SVM parameters can be effectively found out, and better classification results will be obtained.
作者 顾斌杰 潘丰
出处 《计算机应用》 CSCD 北大核心 2013年第3期806-809,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61273131) 江苏高校优势学科建设工程资助项目
关键词 引力搜索算法 反馈策略 变异操作 多峰函数优化 支持向量机 Gravitational Search Algorithm (GSA) feedback mechanism mutation operation multimodal functionoptimization Support Vector Machine (SVM)
  • 相关文献

参考文献14

  • 1RASHEDIE,NEZAMABADI-POURH,SARYAZDIS. GSA:a gravitational search algorithm[J].Information Sciences,2009,(13):2232-2248.doi:10.1016/j.ins.2009.03.004.
  • 2RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S. BGSA:binary gravitational search algorithm[J].Natural Computing,2010,(03):727-745.
  • 3SARAFRAZI S,NEZAMABADI-POUR H,SARYAZDI S. Disruption:a new operator in gravitational search algorithm[J].Scientia Iranica,2011,(03):539-548.
  • 4SCHUTZ B. Gravity from the ground up[M].London:cambridge University Press,2003.
  • 5HASSANZADEH H R,ROUHANI M. A multi-object gravitational search algorithm[A].Washington,DC:IEEE Computer Society,2012.7-12.
  • 6居上游.动态扩散粒子群算法及其应用[J].计算机工程与应用,2011,47(36):61-64. 被引量:2
  • 7KENNEDY J,EBERHART R C. Particle swarm optimization[A].Washington,DC:IEEE Computer Society,1995.1942-1948.
  • 8俞欢军,张丽平,陈德钊,胡上序.基于反馈策略的自适应粒子群优化算法[J].浙江大学学报(工学版),2005,39(9):1286-1291. 被引量:29
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 10JOHN G H,KOHAVI R,PFLEGER K. Irrelevant features and the subset selection problem[A].New Brunswick,NJ,USA:Morgan Kaufmann,1994.121-129.

二级参考文献38

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceed-ings of the IEEE International Conference on Neural Networks. Perth, USA: IEEE Press, 1995 : 1942-1948.
  • 3Hsieh S T, Sun T Y, Liu C C, et al.Efficient population utiliza- tion strategy for particle swarm optimizer[J].IEEE Transactions on Systems, Man, and Cybernetics, 2009,39 (2) : 444-456.
  • 4Bergh F, Engelbrecht A P.Cooperative learning in neural net- works using particle swarm optimizers[J].South African Computer Journal, 2000,11 (6) : 84-90.
  • 5Shelokar P S, Siarry P, Jayaraman V K, et al.Particle swarm and ant colony algorithms hybridized for improved continuous opti- mization[J].Applied Mathematics and Computation, 2007,188 ( 1 ) : 129-142.
  • 6Xie Xiao-Feng,Zhang Wen-Jun,Yang Zhi-Lian.A dissipative par- ticle swarm optimization[C]//The IEEE Congress on Evolution- ary Computation, Hawaii, USA, 2002:1456-1461.
  • 7Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hier- archical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
  • 8Liang J J,Qin A K,Suganthan P N,et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
  • 9Chen X,Li Y M.A modified PSO structure resulting in high ex- ploration ability with convergence guaranteed[J].IEEE Transac- tions on Systems,Man,and Cybemetics,2007,37(5):1271-1289.
  • 10KENNEDY J, EBERHART R C. Particle swarm optimization[A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway, NJ:IEEE, 1995: 1942- 1948.

共引文献2319

同被引文献34

  • 1牛培峰,肖兴军,李国强,马云飞.万有引力搜索算法在电厂锅炉NOx排放模型中的应用研究[J].自动化博览,2011,28(S2):87-92. 被引量:2
  • 2崔志华,曾建潮.基于控制理论的微粒群算法分析与改进[J].小型微型计算机系统,2006,27(5):849-853. 被引量:4
  • 3胡寿松.自动控制原理[M].北京:科学出版社,2008.
  • 4同济大学数学系.高等数学[M].北京:高等教育出版社,2007.
  • 5高尚,江新姿,汤可宗.蚁群算法与遗传算法的混合算法[C]//Proceedingofthe26thChineseControlCon{erence.Zhangjiajie:IEEE,2007:701-104.
  • 6Rashedi E,Nezamabadi-pour H,Saryazdi S.GSA:A Gravitational Search Algorithm[J].Information Sciences,2009,179 (13):2232-2248.
  • 7Trelea I C.The Particle Swarm Optimization Algorithm:Convergence Analysis and Parameter Selection[J].Information Processing Letters,2003,85 (6):317-325.
  • 8Formato R A.Central Force Optimization:A New Metaheuristic with Applications in Applied Electromagnetic[J].Ballooning,2007,77:425-491.
  • 9Bhattacharya A.Solution of Multi-objective Optimal Power Flow Using Gravitational Search Algorithm[J].IET Gener Transm Distrib,2012,6 (8):751-763.
  • 10Abbas B,Nezamabadi-pour H.A Prototype Classifier Based on Gravitational Search Algorithm[J].Applied Soft Computing,2012,12 (2):819-825.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部