期刊文献+

基于社会网络分析的协同推荐方法改进 被引量:28

Collaborative recommendation method improvement based on social network analysis
下载PDF
导出
摘要 协同推荐是电子商务中被广泛使用的个性化服务技术,但由于数据稀疏、冷启动等原因,导致现有协同推荐方法的个性化服务水平不高。为提高协同推荐的准确性,利用社会网络分析对协同推荐方法加以改进,提出一种基于社会网络分析改进的协同推荐方法。该方法利用社会网络分析技术分析用户间的关系,将其量化为信任度以填充用户-项矩阵,并将信任度融入到用户相似性计算中。通过实验分析验证了所提方法的有效性。以信任度扩充用户-项矩阵不仅可以较好地解决协同推荐中数据稀疏和冷启动问题,而且能够提高协同推荐的准确性。 Collaborative recommendation is widely used in E-commerce personalized service. But the existing methods cannot provide high level personalized service due to sparse data and cold start. To improve the accuracy of collaborative recommendation, a collaborative recommendation method based on Social Network Analysis (SNA) was proposed in this paper by using SNA to improve the collaborative recommendation methods. The proposed method used SNA technology to analyze the trust relationships between users, then quantified the relationships as trust values to fill the user-item matrix, and used these trust values to calculate the similarity of users. The effectiveness of the proposed method was verified by the experimental analysis. Using trust values to expand the user-item matrix can not only solve the problem of sparse data and cold start effectively, but also improve the accuracy of collaborative recommendation.
出处 《计算机应用》 CSCD 北大核心 2013年第3期841-844,共4页 journal of Computer Applications
基金 教育部人文社会科学研究青年基金资助项目(12YJCZH048) 辽宁省自然科学基金资助项目(20102083) 辽宁"百千万人才工程"培养经费资助项目
关键词 电子商务 社会网络分析 相似性 信任度 协同推荐 E-commerce Social Network Analysis (SNA) similarity trust value collaborative recommendation
  • 相关文献

参考文献12

二级参考文献48

共引文献868

同被引文献277

  • 1吴泓辰,王新军,成勇,彭朝晖.基于协同过滤与划分聚类的改进推荐算法[J].计算机研究与发展,2011,48(S3):205-212. 被引量:20
  • 2高旻,吴中福.基于个性化情境和项目的协同推荐研究[J].东南大学学报(自然科学版),2009,39(S1):27-31. 被引量:8
  • 3孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 4中国知网[EB/OL].http://www.cnki.net,2010-10-07.
  • 5张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:193
  • 6MASSA P, BHATACHARJEE B. Using trust in recommender sys- tems: an experimenta[ analysis [ C]// Proceedings of the 2nd Con- ference on Trust Management. Berlin: Springer, 2005:221 -235.
  • 7MA H, YANG H X, LYU M R, et al. SoRec: social recommenda- tion using probabilistic matrix factorization [ C] // Proceedings of the 17th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2008:931 -941.
  • 8MASSA P, AVESANI P. Trust-aware recommender systems [ C]// Proceedings of the 2007 ACM Conference on Recommender Systems. New York: ACM Press, 2007:17 -24.
  • 9NOEL J, SANNER S, TRAN K N, et al. New objective functions for social collaborative filtering [ C]//Proceedings of the 21 st Inter- national Conference on Work Wide Web. New York: ACM Press, 2012:859-868.
  • 10LESKOVEC J, HUTTENLOCHER D, KLEINBERG J. Signed net- works in social media [ C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2010:1361 - 1370.

引证文献28

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部