期刊文献+

非结构网格的并行多重网格解算器 被引量:3

Parallel Multigrid Solver for Unstructured Grid
下载PDF
导出
摘要 多重网格方法作为非结构网格的高效解算器,其串行与并行实现在时空上都具有优良特性.以控制方程离散过程为切入点,说明非结构网格在并行数值模拟的流程,指出多重网格方法主要用于求解时间推进格式产生的大规模代数系统方程,简述了算法实现的基本结构,分析了其高效性原理;其次,综述性地概括了几何多重网格与代数多种网格研究动态,并对其并行化的热点问题进行重点论述.同时,针对非结构网格的实际应用,总结了多重网格解算器采用的光滑算子;随后列举了非结构网格应用的部分开源项目软件,并简要说明了其应用功能;最后,指出并行多重网格解算器在非结构网格应用中的若干关键问题和未来的研究方向. As an unstructured-grid high efficient solver, the multigrid algorithm, with its serial and parallel application, can achieve the optimal properties of being on time and having space complexity. To illustrate the numerical simulation process of an unstructured grid, this paper begins with the discretization of governing equations and points out that the multigrid algorithm is mainly used for solving large scale algebraic equation, which is derived from the time marching scheme. For the multigrid algorithm, the study briefly describes its basic structure and efficient principle. Secondly, the paper reviews research that trend about the geometric multigrid and algebraic multigrid and discusses the basic design principles and hot topics on parallelization. At the same time, tbr the practical application of unstructured grid, the paper summarizes and classifies many smoothers, followed by examples of open source software about unstructured grid industrial application. Finally, some applications and key problems in this field are highlighted, as well as the future progress of parallel multigrid solver on unstructured grid.
出处 《软件学报》 EI CSCD 北大核心 2013年第2期391-404,共14页 Journal of Software
基金 国家重点基础研究发展计划(973)(2009CB723803)
关键词 非结构网格 COMPUTATIONAL FLUID dynamics(CFD) 并行计算 多重网格 高效解算器 unstructured grid computational fluid dynamics (CFD) parallel computing multigrid efficient solver
  • 相关文献

参考文献64

  • 1Mavriplis DJ. Unstructured-Mesh discretizations and solvers for computational aerodynamics[J].{H}AIAA Journal,2008,(06):1281?1298.
  • 2Cockburn B,Shu CW. The Runge-Kutta discontinuous galerkin method for conservation laws V:Multidimensional systems[J].{H}Journal of Computational Physics,1998,(02):199?224.
  • 3Wang ZJ. Spectral (finite) volume method for conservation laws on unstructured grids:Basic formulation[J].{H}Journal of Computational Physics,2002,(01):210?251.
  • 4Liu Y,Vinokur M,Wang ZJ. Spectral difference method for unstructured grids I:Basic formulation[J].{H}Journal of Computational Physics,2006,(02):780?810.
  • 5Solchenbach K,Trottenberg U. On the multigrid acceleration approach in computational fluid dynamics[A].Bonn:Springer-Verlag,1988.145?158.
  • 6Yang UM. Parallel algebraic multigrid methods-High performance preconditioners[A].Heidelberg,Berlin:Springer-Verlag,2006.209?236.
  • 7Hülsemann F,Kowarschik M,Mohr M,Rüde U. Parallel geometric multigrid[A].Heidelberg,Berlin:Springer-Verlag,2005.165?208.
  • 8Mavriplis DJ,Darmofal D,Keyes D,Turner M. Petaflops opportunities for the NASA fundamental aeronautics program[A].Miami:AIAA,Inc,2007.25?61.
  • 9Komatitsch D,Erlebacher G,G?oddeke D,Michéa D. High-Order finite-element seismic wave propagation modeling with MPI on a large GPU cluster[J].{H}Journal of Computational Physics,2010,(20):7692?7714.
  • 10T?lke J,Krafczyk M. TeraFLOP computing on a desktop PC with GPUs for 3D CFD[J].Int'l Journal of Computational Fluid Dynamics,2008,(07):443?456.

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部