期刊文献+

系列烷基芳基磺酸盐的自由能微扰计算

The free energy perturbation calculation of series alkyl aryl sulfonates
原文传递
导出
摘要 采用分子动力学的方法模拟了9种系列烷基芳基磺酸盐在真空和水溶液环境下的结构与相互作用。利用自由能微扰方法计算了9种结构的水合自由能,结果表明:随着芳环向长烷基链的中间位置移动,胶束化能力下降,随着芳环上长烷基链碳数的增加、随着芳环上短烷基链个数的增加和短烷基链碳数的增加,胶束化能力提升;通过对自由能的力的分解和原子对的径向分布函数分析,揭示了胶束的驱动力是疏水效应综合作用的结果;根据氢键的图形定义,分析了系列表面活性剂极性头与周围水分子的氢键相互作用,发现氢键的数目能增强或者减弱分子脱离胶束体的趋势,进而影响胶束的稳定性;同时计算了水分子中氢键的生存周期。 The interaction of nine alkyl aryl sulfonates in the vacuum and solution was simulated used by a molecular dynamics method. The solvation free encrgy which have nine structure was calculated from free energy perturbation (FEP), and the result indicate: as the aromatic ring shift from the edge to the middle of the long alkyl chain, the formation ability of mieelle and the micelle stability is decreased. With the aromatic ring carbon number increasing of the long alkyl chain and with the number of aromatic ring of the short alkyl chain the micelle slability is increasing, it so as to the aromatic ring carbon number increasing of the short alkyl chain. Through disassembling tree energy and analyzing radial function of the twain atom, the result of hydrophobic effect synthesis effect was micelle driving force. The reciprocity of scries polarity of surfactant and the hydrogen bond of water was analyzed, which based on the graph definition of the hydrogen bond. We found that the number of hydrogen bond could strengthen or weaken the current of molecule deviating micelle, and then effected the stability of micelle. At the same time, the existent cycle of hydrogen bond in water molecule could be calculated.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第1期57-62,共6页 Computers and Applied Chemistry
基金 国家科技重大专项(2008ZX05011) 国家重点基础研究发展规划(973)项目(2005CB221305)
关键词 烷基芳基磺酸盐 自由能微扰法 分子动力学模拟 氢键 alkyl benzene sulfonates, free energy perturbation, molecular dynamics simulation, hydrogen bond
  • 相关文献

参考文献22

  • 1Han D;Shen P P.The Principle and Application of Surfactants in Enhanced Oil Recovery[M]北京:石油工业出版社,200124-27.
  • 2Whittaker M;Floyd C D;Brown P;Gearing A J H.查看详情[J],Chemical Reviews19992735.
  • 3Chen L Y;Rydel T J;Dunawan C M;Pikul S;Dunhnm K M.查看详情[J],Journal of Molecular Biology1999545.
  • 4Poter J R;Beeley N R A;Boyce B A.查看详情[J],Bioorganic and Medicinal Chemistry Letters1994(04):2741.
  • 5Schuettelkopf A W,van Aalten D M F. PRODRG-a tool for high-throughput crystallography of protein-ligand complexes[J].Acta Crystallographica,2004.1355-1363.
  • 6Berendsen H J C,Postma J P M,van Gunsteren W F,Hermans J. Interaction models for water[A].D.Reidel Publishing Company Dordr,1981.331-342.
  • 7Berk Hess,Carsten Kutzner. David van der Spoel and Erik Lindahl GROMACS4:Algorithms for highly efficient,load-balanced,and scalable molecular simulation[J].J Chem Theor Comp,2008,(04).
  • 8van Gunsteren W F,Billeter S R,Eising A A,Hünenberger P H,Krüger P,Mark A E,Scott W R P,Tironi I G. Biomolecular Simulation:The GROMOS96 Manual and User Guide[M].Switzerland:Hochschulverlag AG an der ETH Z"urich,1996.
  • 9Darden T;York D;Pedersen L.查看详情[J],Journal of Chemical Physics1993(12):10089-10092.
  • 10Chelli R;Procacci P;Cardini G;Califan S.查看详情[J],Physical Chemistry Chemical Physics1999879.

二级参考文献95

  • 1姜小明,张路,安静仪,赵濉,俞稼镛.多烷基苯磺酸钠水溶液的表面性质[J].物理化学学报,2005,21(12):1426-1430. 被引量:23
  • 2丁厚强,蔡文生,邵学广.自由能微扰法用于α-环糊精对氨基酸的手性识别研究[J].计算机与应用化学,2006,23(7):584-586. 被引量:5
  • 3Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev, 1998, 98(5): 1743-1753.
  • 4Hedges A R. Industrial applications of cyclodextrins. Chem Rev, 1998, 98(5): 2035-2044.
  • 5Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. Int J Pharm, 2007, 329(1-2): 1-11.
  • 6Hicks K B, Haines R M, Tong C B S, Sapers G M, El-Atawy Y, Irwin P L, Seib P A. Inhibition of enzymatic browning in fresh fruit and vegetable juices by soluble and insoluble forms of β-cyclodextrin alone or in combination with phosphates. J Agric Food Chem, 1996.44(9): 2591-2594.
  • 7Dodziuk H. Cyclodextrins and their complexes: Chemistry, analytical methods, applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
  • 8Eliadou K, Yannakopoulou K, Rontoyianni A, Mavridis I M. NMR detection of simultaneous formation of [2] and [3] pseudorotaxanes in aqueous solution between α-cyclodextrin and linear aliphatic α, ω-amino acids, an α, ω-diamine and an α, ω-diacid of similar length, and comparison with the solid-state structures. J Org Chem, 1999, 64(17): 6217-6226.
  • 9Miyake K, Yasuda S, Harada A, Sumaoka J, Komiyama M, Shigekawa H. Formation process of cyclodextrin necklace-analysis of hydrogen bonding on a molecular level. J Am Chem Soc, 2003, 125(17): 5080-5085.
  • 10Liu Y, Li L, Chen Y, Yu L, Fan Z, Ding F. Molecular recognition thermodynamics of bile salts by β-cyclodextrin dimers: Factor governing the cooperative binding of cyclodextrin dimers. J Phys Chem B, 2005, 109(9): 4129-4134.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部