期刊文献+

基于模拟退火粒子群优化的基因数据双聚类算法 被引量:6

A gene data biclustering algorithm based on simulated annealing and particle swarm optimization
原文传递
导出
摘要 基因数据双聚类是基因表达数据矩阵中具有相近的表达水平的子矩阵,其中的行和列分别代表基因子集和条件子集。双聚类算法则是在基因数据矩阵的行和列2个方向上同时聚类以找出这样的子矩阵。本文提出基于模拟退火与粒子群优化的混合优化算法,避免单纯模拟退火法中的概率突跳性缺点。我们算法采用自底向上的搜索策略,首先生成双聚类种子,然后采用混合优化算法添加种子的行和列,找出最优聚类结果。在酵母细胞基因数据集的实验中,我们双聚类的各项指标能够达到高质量结构,验证了本文方法的有效性。 in gene expression data matrix, a bicluster is a grouping of a subset of genes and a subset of conditions which exhibits a high correlation of expression activity across both rows and columns. Biclustering algorithms aim at finding subsets of genes and subsets of conditions such that a single cellular process is the main contributor to the expression of the gene subset over the condition subset. The algofthm is simulated annealing and particle swarm hybrid optimization algorithm and can avoid the drawback of data's leap from simulated annealing algorithm. This algorithm is based on the bottom-up search strategy. First, we generate a set of high quality bicluster seeds. In the second phase, these bicluster seeds are enlarged by adding more genes and conditions using simulated annealing and particle swarm hybrid optimization algorithm. In the third phase, we have used the same gene expression data sets as the yeast dataset to compare our results. The experiment result indicates that the total score of our algorithm can achieve bicluster structure with higher qualities, and verify the effectiveness of our algorithm.
作者 朱娴 许建华
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第1期93-96,共4页 Computers and Applied Chemistry
关键词 双聚类 基因表达数据 模拟退火法 粒子群优化算法 bicluster, gene expression data, simulated annealing algorithm, particle swarm hybrid optimization algorithm
  • 相关文献

参考文献12

  • 1Cheng Y,Church G M. Biclustering of expression data[A].2000.93-103.
  • 2Yang J,Wang H,Wang W. Enhanced biclustering on expression data[A].2003.321-327.
  • 3Zhang Z,Teo A. Mining deterministic biclusters in gene expression data[A].2004.283-290.
  • 4Tanay A,Sharan R,Shamir R. Discovering statistically significant biclusters in gene expression data[J].Bioinformatics,2002,(01):136-144.
  • 5Liping J,Wei K,Kan T L. Quick hierarchical biclustering on microarray gene expression data[A].2006.110-120.
  • 6Xu R,WunschII D C. Bartmap:aviable structure for biclustering[J].Neural Networks,2011,(24):709-716.
  • 7Hanczar B,Nadif M. Using the bagging approach for biclustering of gene expression data[J].Neurocomputing,2011,(74):1595-1605.
  • 8Chakraborty A. Biclustering of gene expression data by simulated annealing[A].2005.6,632.
  • 9Wolf T,Brors B,Hofmann T. Global biclustering of microarray data[A].2006.125-129.
  • 10Tavazoie S,Hughes J D,Campbell M J. Systematic determination of genetic network architecture[J].Nature Genetics,1999,(03):281-285.doi:10.1038/10343.

同被引文献62

  • 1罗尚凤,李国光,何宇东,辛永洁,武建华,王燕生.枳术丸的化学成分分析[J].西北药学杂志,1994,9(5):206-209. 被引量:11
  • 2李国春,戴慎.动态聚类分析在中医方剂药量组合规律中的应用[J].中国卫生统计,2006,23(1):63-64. 被引量:9
  • 3闫雷鸣,孙志挥.一种基于二次互信息的双聚类算法[J].计算机工程与应用,2006,42(22):158-160. 被引量:4
  • 4Cheng Yizong, Church G M. Biclustering of expression data[C]// Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology. 2000:93-103.
  • 5Yang Jiong, Wang Wei. Enhanced biclustering on gene expression data[C]// Proceedings of the 3rd IEEE Conference on Bioinformatics and Bioengineering. 2003:321-327.
  • 6Zhang Ya, Zha Hongyuan, Chu C H. A time-series biclustering algorithm for revealing co-regulated genes[C]// Proceedings of the 5th IEEE International Conference on Information Technology: Coding and Computing. 2005:32-37.
  • 7Ashburner M, Ball C A, Blake J A, et al. Gene ontology: Tool for the unification of biology[J].Nature Genetics, 2000,25(1):25-29.
  • 8David Martin, Christine Brun, Elisabeth Remy, et al. GOToolBox: Functional analysis of gene datasets based on gene ontology[J].Genome Biology, 2004,5(12):R101.
  • 9Zeeberg B R, Feng Weimin, Wang G, et al. GoMiner: A resource for biological interpretation of genomic and proteomic data[J].Genome Biology, 2003,4(4):R28.
  • 10Fadhl Al-Akwaa, Yasser Kadah. An automatic gene ontology software tool for bicluster and cluster comparisons[C]// Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. 2009.

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部