期刊文献+

单轴旋转惯导系统误差特性研究 被引量:3

Research on Single Axis Rotation INS Error Characteristics
下载PDF
导出
摘要 为研究单轴旋转惯导系统的误差特性,推导了旋转惯导误差方程,分析了陀螺典型器件误差对惯导系统误差特性的影响。为了研究不同旋转方式对陀螺器件误差的调制效果,设计了单轴单向连续旋转、单轴正反连续旋转以及单轴转停三种旋转方式,分析了各旋转方式对典型误差源的调制效果。综合考虑陀螺常见器件误差,选取典型误差量,基于Simulink建立了仿真模型,仿真了不同旋转方式下的惯导系统位置误差特性。结果表明,不同的旋转方式会产生不同的调制效果;同时,单轴正反旋转的惯导系统可以有效地对陀螺常见器件误差进行自补偿,提高定位精度。 For the study of error characteristics of single axis rotation INS, the rotating INS error equation was derived and the influence of the typical device error of gyro on INS error characteristics was analyzed. On this basis, in order to study the modulation effect on gyro device error in different rotating ways, three rotating ways were designed. They are single axis one - way continuous rotation, single axis positive and reverse continuous rotation, and single axis rotate -stop rotation. The modulation effect on typical error sources in different rotating ways was analyzed. The simulation model with gyro common device errors and the typical amounts was established based on Simulink. The position errors were simulated. The simulation result shows that modulation effects vary with the rotation ways. And the single axis positive and reverse rotation INS can compensate the common device errors of gyros effectively so as to improve the precision of INS.
出处 《计算机仿真》 CSCD 北大核心 2013年第2期17-20,共4页 Computer Simulation
关键词 旋转惯导 旋转方式 误差分析 Rotating inertial navigation Rotating way Error analysis
  • 相关文献

参考文献6

二级参考文献28

  • 1袁保伦,饶谷音.光学陀螺旋转惯导系统原理探讨[J].国防科技大学学报,2006,28(6):76-80. 被引量:68
  • 2[1]Levinson E,San Giovanni C Jr.Laser Gyro Potential for Long Endurance Marine Navigation[A].Rec.IEEE PLANS Position Location Navigation Symposium[C],Atlantic City,NJ:IEEE,Piscataway,NJ,1980:115-129.
  • 3[2]Lahhan J I,Brazell J R.Acoustic Noise Reduction in the MK49 Ship's Inertial Navigation System (SINS)[A].Rec.IEEE PLANS Position Location and Navigation Symposium[C],Monterey,CA,USA:IEEE,Piscataway,NJ,USA,1992:32-39.
  • 4[3]Heckman D W,Baretela L M.Improved Affordability of High Precision Submarine Inertial Navigation by Insertion of Rapidly Developing Fiber Optic Gyro Technology[A].IEEE PLANS Position Location and Navigation Symposium[C],San Diego,CA,USA:IEEE,Piscataway,NJ,USA,2000:404-410.
  • 5[4]Morrow R B Jr,Heckman D W.High Precision IFOG Insertion into the Strategic Submarine Navigation System[A].IEEE PLANS Position Location and Navigation Symposium[C],Palm Springs,CA:IEEE,Piscataway,NJ,USA,1998:332-338.
  • 6[5]Titterton D H,Weston J L.Strapdown Inertial Navigation Technology[M].Second Edition.Lexington,Massachusetts,USA:Copublished by the American Institute of Aeronautics and Astronautics and the Institution of Electrical Engineers,2004:342-344.
  • 7Levinson E, Giovanni C S. Laser gyro potential for long endurance marine navigation[C]. IEEE Position Location and Navigation Symposium. 1980:115-129.
  • 8Tucker T, Levinson E. The AN/WSN-7B marine gyrocompass/navigator [C]. INO NTM 2000, 26-28 Anaheim , CA2000:348-357.
  • 9Draper C. Control, navigation, and guidance[J]. IEEE Control Systems Magazine, 1981,1 (4):4 - 17.
  • 10Levinson E, Horst T, Willcocks M. The next generation marine inertial navigator is here now[C]//Proc, of the IEEE Position Location and Navigation Symposium, 1994 : 121 - 127.

共引文献72

同被引文献9

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部