期刊文献+

偏微分方程的算子自定义小波解耦算法研究 被引量:6

Operator Custom-Design Decoupling Algorithm for Partial Differential Equations
下载PDF
导出
摘要 利用小波算法求解偏微分方程最困难的问题是随着尺度的升高,系统方程的耦合度越来越高,极大降低了计算效率和精度。针对此问题提出了采用算子自定义小波的多尺度解耦算法,首先建立有限元多分辨空间和小波细化关系,提出偏微分方程的多尺度计算理论方法。在优化方案的基础上,提出算子自定义小波的构造方法及解耦条件。改进方法的突出优点在于根据工程问题的实际需要灵活构造具有期望特性的小波基。提出偏微分方程的多尺度算子自定义小波算法,充分利用算子自定义小波的嵌套逼近和尺度解耦特性,实现问题的高效求解。仿真结果表明,改进的算子自定义小波解耦算法具有计算效率高、精度高等特点。 The most difficult problem of solving partial differential equations (PDEs) is that.the decoupling degrees of discrete equations become higher and higher while the scale is increasing, which results in the low computational efficiency and precision. An operator custom - design decoupling algorithm was proposed to solve this problem. The muhiresolution finite element space and wavelet refinement relation were constructed. The operator custom - design wavelets and decoupling condition were proposed based on the lifting scheme. The distinguished feature of the construction method is that the wavelets can be designed depending on the requirements of engineering problems. A muhiscale operator custom - design wavelet decoupling algorithm was presented for solving PDEs, which uses both the nested approximation and scale deeoupling feature. Numerical example demonstrates that the operator custom - design decoupling algorithm is highly efficient and accurate.
出处 《计算机仿真》 CSCD 北大核心 2013年第2期261-264,409,共5页 Computer Simulation
基金 国家自然科学基金资助项目(61100165 51205309)
关键词 偏微分方程 算子自定义小波 解耦算法 Partial differential equations Operator custom -design wavelet Decoupling algorithm
  • 相关文献

参考文献12

  • 1X F Chen,S J Yang. The construction of wavelet finite element and its application[J].Finite Elements in Analysis and Design,2004,(5-6):541-554.
  • 2何正嘉.小波有限元理论及其工程应用[M]北京:科学出版社,2006.
  • 3P Schr(o)der,W Sweldens. Spherical Wavelets:Efficiently Repre-senting Functions on the Sphere[A].1995.161-172.
  • 4W Sweldens. The lifting scheme:a construction of second generation wavelets[J].SIAM Journal on Mathematical Analysis,1997,(02):511-546.
  • 5W Sweldens. The lifting scheme:a custom-design construction of biorthogonal wavelets[J].Applied and Computational Harmonic Analysis,1996,(02):186-200.
  • 6宓铁良,孙兵兵,杨慧珠.基于第二代小波自适应网格的二维声波方程波传模拟[J].地球物理学报,2009,52(11):2862-2869. 被引量:12
  • 7陈明生,吴先良,沙威,黄志祥.二代小波在求解电磁场积分方程中的应用[J].系统仿真学报,2009,21(17):5507-5510. 被引量:2
  • 8何育民,陈雪峰,向家伟,何正嘉.基于第二代小波的自适应有限元构造研究[J].西安交通大学学报,2006,40(9):1092-1095. 被引量:2
  • 9Y M Wang,X F Chen,Z J He. A second-generation wavelet-based finite element method for the solution of partial differential equations[J].2012.
  • 10O V Vasilyev,C Bowman. Second generation wavelet collocation method for the solution of partial differential equations[J].Journal of Computational Physics,2000.660-693.

二级参考文献17

共引文献12

同被引文献61

  • 1胡海彬,刘俊峰,钱稷.基于迭代学习控制算法的苹果园灌溉系统[J].农机化研究,2012,34(6):169-172. 被引量:2
  • 2Aubert G,Komprobst P. Mathematical problems in image processing:Partial differential equations and the calculus of variations[M].New York:Springer,2006.
  • 3Liu F,Liu J. Anisotropic diffusion for image denoising based on diffusion tensors[J].JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,2012,(03):516-521.
  • 4Li F,Shen C,Liu R. A fast implementation algorithm of TV inpainting model based on operator splitting method[J].Computers and Electrical Engineering,2011,(05):782-788.
  • 5Ghita O,Whelan P F. A new GVF-based image enhancement formulation for use in the presence of mixed noise[J].Pattern Recognition,2010,(08):2646-2658.
  • 6Eugeniusz Zieniuk, Dominik. Parametric integral e- quations systems in 2D transient heat conduction a- nalysis[-J~. International Journal of Heat and Mass Transfer,2014,78(12) :571-587.
  • 7H Ye, F Liu, V Anh, et al. Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations [-J 1. Applied Mathematics and Computation, 2014, 227 (15) :531-540.
  • 8Penalty. MPQI method for constrained parabolic op- timal control problemsEJ3. International Journal of Computer Science, 2014,2 (12) : 635-648.
  • 9Andrej Cherkaev. Variational method for optimal multimaterial composites and optimal designFJ]. International Journal of Engineering Science, 2014, 83(12) : 162-173.
  • 10Asghar Ghorbani, Jafar Saberi-Nadjafi. An effec- tive modification of He' s variational iteration method~J]. Nonlinear Analysis Real World Appli- cations, 2009,10 (5) : 2828-2833.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部