期刊文献+

基于微博显性结构特征的用户强关系研究 被引量:5

A Research of the User's Strong Relationship Based on the Dominant Structure Characteristics of Microblog
原文传递
导出
摘要 微博作为近年最受关注的社交网络平台,在帮助用户建立关系时主要是通过显性的微博结构特征和隐性的用户推荐机制来实现。目前在基于微博结构特征构建用户关系时尚未进行科学的强弱关系分析和论证,处于随意取舍阶段。文章发现结合人际关系的传统分类(即地缘关系、学缘关系和业缘关系),通过因子分析找出强关系构建因子,在帮助用户拓展社交网络关系时有很好的参考意义和实践价值。 Microbtog is the most concern social network platform in recent years. To help users establish relations is mainly through the dominant microblog structure characteristics and recessive user recommendation mechanism. At present, there haven't been scientifically analyzed for the strength of the relationship. Based on the interpersonal relationship of traditional classification (i. e., geopolitical relations, learn border relations, and industry border relationship), and by the factor analysis, the paper finds the strong relationship factor, Which is helpful and practical for users to expand social network relation.
出处 《图书馆学研究》 CSSCI 北大核心 2013年第3期58-63,共6页 Research on Library Science
关键词 微博 用户关系 显性结构 强关系 microblog customer relationship dominant structure strong relationship
  • 相关文献

参考文献6

二级参考文献51

共引文献286

同被引文献78

  • 1方曙光.“弱关系”和“强关系”下的网络互动和网络运动[J].北京理工大学学报(社会科学版),2014,16(2):135-141. 被引量:15
  • 2Kaplan A. Users of the world, unite! The challenges and opportunities of Social Media [J].Business Hori- zons, 2010, 53 (1): 59-68.
  • 3VELIKOVICHL, BLAIR-GOLDENSOHNS, HA- NNAN K, et al. The viability of Web- derived polarity lexicons[C]//Proceedings of the North American Chap- ter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Lin- guistics, 2010: 777-785.
  • 4LEE D H, SCHLEYER T. Social tagging is no substitute for controlled indexing: a comparison of medical subject headings and CiteULike tags assigned to 231, 388 papers [J]. Journal of the American Society for Information Science and Technology 2012, 63 (9): 1747-1757.
  • 5NARAYANAM IK, NARAHARI Y. A shapley val- ue-based approach to discover influential nodes in social networks[J]. IEEE Trans on Automation Science and En-gineering, 2011, 20 (1): 130-147.
  • 6M. EFRON. Information Search and Retrieval in Mi- croblogs [J]. Journal of the American Society for Infor- mation ScienceandTechnology, 2011, 62 (6): 996 -1008.
  • 7B. SUH, L. HONG, P. PIROLLI. Want to be retweet- ed-Large scale analytics on factors impacting retweet in Twitter network[C]//IEEE, 2010:177 -184.
  • 8Yu Louis, Asur Sitaram, Huberman Bernardo A. What trends in Chinese social media [C] //Proceedings of the 5th SNA-KDD Workshop on Web Mining and Social Network Analysis (SNA-KDD'I 1). New York: ACM Press, 2011.
  • 9Zhiheng X, Ru L, Xiang L, et al. Discovering User Interest on Twitter with a Modified Author-Topic Model[C]//Proceedings of the 201 i IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology. Washington DC, USA: IEEE Computer Society, 2011.
  • 10Narnchitparames J, Gunes M H, Louis S J. Friend recommendations in social network topology [C] //Evolutionary Computation (CEC) , 2011 IEEE Congress on. New Orleans: IEEE, 2011.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部