摘要
包括干旱在内的非生物胁迫是农业生产中导致作物减产的主要因素。利用现代分子生物学技术阐明非生物胁迫耐受性的控制机理,以及工程化胁迫耐受性作物均基于特异胁迫相关基因的表达。因此,发展胁迫耐受性植物的基因工程可能是增强作物品种胁迫耐受性的一条捷径。但转基因品种产生不仅受限于转化过程的是否成功,而且受限于胁迫耐受性是否适当整合;仍需阐明胁迫条件下转基因植物的评价,以及转入基因在整体植株水平的生理效应。综述利用转基因技术提高植物非生物胁迫耐受性的研究进展,讨论在接近大田环境条件下的非生物胁迫响应的评估和转基因植物耐受性的检测标准。
Abiotic stresses including drought are serious threats to the sustainability of crop yields. Use of modern molecular biology tools for elucidating the control mechanisms of abiotic stress tolerance, and for engineering stress tolerant crops is based on the expression of specific stress-related genes. Hence, genetic engineering for developing stress tolerant plants, based on the introgression of genes that are known to be involved in stress response and putative tolerance, might prove to be a faster track towards improving crop varieties. Nevertheless, the task of generating transgenic cultivars is not only limited to the success in the transformation process, but also proper incorporation of the stress tolerance. Evaluation of the transgenic plants under stress conditions, ~ind understanding the physiological effect of the inserted genes at the whole plant level remain as major challenges to overcome. This review focuses on the progress in using transgenic technology for the improvement of abiotic stress tolerance in plants. This includes discussion on the evaluation of abiotic stress response and the protocols for testing the transgenic plants for their tolerance under close to field conditions.
出处
《生物技术通报》
CAS
CSCD
北大核心
2013年第1期16-24,共9页
Biotechnology Bulletin
基金
湖南省高等学校科研项目(10C0493
11C0178)
衡阳师范学院科学基金青年项目(09A40
10A54)
关键词
非生物胁迫
干旱耐受性
基因工程
转录因子
蒸腾效率
Abiotic stress Drought tolerance Genetic engineering Transcription factors Transpiration efficiency