期刊文献+

利用转基因途径提高植物非生物胁迫耐受性的研究进展 被引量:6

Progress in the Improvement of Abiotic Stress Tolerance in Plants Using Transgenic Approaches
下载PDF
导出
摘要 包括干旱在内的非生物胁迫是农业生产中导致作物减产的主要因素。利用现代分子生物学技术阐明非生物胁迫耐受性的控制机理,以及工程化胁迫耐受性作物均基于特异胁迫相关基因的表达。因此,发展胁迫耐受性植物的基因工程可能是增强作物品种胁迫耐受性的一条捷径。但转基因品种产生不仅受限于转化过程的是否成功,而且受限于胁迫耐受性是否适当整合;仍需阐明胁迫条件下转基因植物的评价,以及转入基因在整体植株水平的生理效应。综述利用转基因技术提高植物非生物胁迫耐受性的研究进展,讨论在接近大田环境条件下的非生物胁迫响应的评估和转基因植物耐受性的检测标准。 Abiotic stresses including drought are serious threats to the sustainability of crop yields. Use of modern molecular biology tools for elucidating the control mechanisms of abiotic stress tolerance, and for engineering stress tolerant crops is based on the expression of specific stress-related genes. Hence, genetic engineering for developing stress tolerant plants, based on the introgression of genes that are known to be involved in stress response and putative tolerance, might prove to be a faster track towards improving crop varieties. Nevertheless, the task of generating transgenic cultivars is not only limited to the success in the transformation process, but also proper incorporation of the stress tolerance. Evaluation of the transgenic plants under stress conditions, ~ind understanding the physiological effect of the inserted genes at the whole plant level remain as major challenges to overcome. This review focuses on the progress in using transgenic technology for the improvement of abiotic stress tolerance in plants. This includes discussion on the evaluation of abiotic stress response and the protocols for testing the transgenic plants for their tolerance under close to field conditions.
出处 《生物技术通报》 CAS CSCD 北大核心 2013年第1期16-24,共9页 Biotechnology Bulletin
基金 湖南省高等学校科研项目(10C0493 11C0178) 衡阳师范学院科学基金青年项目(09A40 10A54)
关键词 非生物胁迫 干旱耐受性 基因工程 转录因子 蒸腾效率 Abiotic stress Drought tolerance Genetic engineering Transcription factors Transpiration efficiency
  • 相关文献

参考文献60

  • 1FAO (Food,Agriculture Organization of the United Nations). FAO production yearbook[M].FAO,Rome,2004.
  • 2Ozturk ZN,Talame V,Deyholos M. Monitoring large-scale changes in transcript abundance in drought-and salt stressed barley[J].Plant Molecular Biology,2002.551-573.
  • 3Allen RD. Dissection of oxidative stress tolerance using transgenic plants[J].Plant Physiology,1995.1049-1054.
  • 4Vinocur B,Altman A. Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J].Current Opinion in Biotechnology,2005,(2):123-132.doi:10.1016/j.copbio.2005.02.001.
  • 5Bray EA. Molecular responses to water deficit[J].Plant Physiology,1993.1035-1040.
  • 6Holmstrom KO,Somersalo S,Mandal A. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine[J].Journal of Experimental Botany,2000.177-185.
  • 7Yamada M,Morishita H,Urano K. Effects of free proline accumulation in petunias under drought stress[J].Journal of Experimental Botany,2005.1975-1981.
  • 8Cortina C,Culianez-Macia F. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis[J].Plant Science,2005.75-82.
  • 9Capell T,Bassie L,Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress[J].Proceedings of the National Academy of Sciences(USA),2004.9909-9914.
  • 10Quimlo CA,Torrizo LB,Setter TL. Enhancement of submergence tolerance in transgenic rice plants overproducing pyruvate decarboxylase[J].Journal of Plant Physiology,2000.516-521.

二级参考文献248

  • 1毛国红,宋林霞,孙大业.植物钙调素结合蛋白研究进展[J].植物生理与分子生物学学报,2004,30(5):481-488. 被引量:48
  • 2张海文,谢丙炎,卢向阳,杨宇红,陈琪,黄荣峰.拟南芥防卫基因PDF1.2启动子中GCC盒是应答茉莉素反应必要的顺式作用元件[J].科学通报,2004,49(23):2444-2448. 被引量:9
  • 3刘曼,毛国红,孙大业.植物的钙调素亚型[J].植物生理学通讯,2005,41(1):1-6. 被引量:4
  • 4胡晓丽,李德全.植物蛋白磷酸酶2C(PP2C)及其在信号转导中的作用[J].植物生理学通讯,2007,43(3):407-412. 被引量:17
  • 5Bray E A. Plant responses to water deficit [J]. Trends Plant Sci, 1997,2:48-54.
  • 6Ingrain J, Barrels D. The molecular basis of dehydration tolerance in plants[J]. Ann Rev Plant Physiol Plant Mol Biol, 1996,47:377- 403.
  • 7Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response[J]. Plant Physiol, 1997,115: 327-334.
  • 8Nakashima K, YamaguehiI- Shinozaki K, Seki M. Regulatory net- work of gene expression in the drought and cold stress responses [J]. Curr Opin Plant Biol, 2003,6:410-417.
  • 9Zhu J K. Salt and drought stress signal transduction in plants[J].Annu Rev Plant Biol, 2002,53:247-273.
  • 10Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high- salinity stresses using a full-length cDNA microarray [J]. Plant J, 2002,31:279-292.

共引文献126

同被引文献81

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部