期刊文献+

矩阵方程AX=B的自反最小秩解及其最佳逼近 被引量:2

The reflexive minimal rank solution of the matrix equation AX = B and the optimal approximation
下载PDF
导出
摘要 利用矩阵对的广义奇异值分解,得到了矩阵方程AX=B有自反解的充分必要件,以及有解时,定秩解、最小秩解的一般表达式.另外,给出了自反最小秩解集合中与给定矩阵的最佳逼近解. By applying the generalized singular value decomposition of matrix pairs, the necessary and sufficient conditions are obtained for the existence of the reflexive solutions of the matrix equation AX = B, and the expression of the fixed and minimal rank solutions is also shown. In addition, for the minimal rank solution set, the expression of the optimal approximation solution to a given matrix is derived.
出处 《纯粹数学与应用数学》 CSCD 2012年第6期719-727,共9页 Pure and Applied Mathematics
基金 国家自然科学基金(10571047) 高校博士学科点专项科研基金(20060532014)
关键词 矩阵方程 自反矩阵 广义奇异值分解 最小秩解 最佳逼近 matrix equation, reflexive matrix, generalized singular value decomposition, minimal rank,optimal approximation
  • 相关文献

参考文献13

  • 1胡锡炎,张磊,谢冬秀.双对称矩阵逆特征值问题解存在的条件[J].计算数学,1998,20(4):409-418. 被引量:88
  • 2肖庆丰,张忠志,顾广泽.广义次对称矩阵反问题的最小二乘解[J].纯粹数学与应用数学,2006,22(4):560-564. 被引量:6
  • 3胡锡炎,张磊,周富照.对称正交对称矩阵逆特征值问题[J].计算数学,2003,25(1):13-22. 被引量:27
  • 4Chen H C. Generalized reflexive matrices:special properties and applications[J].SIAM Journal on Matrix Analysis and Applications,1998.140-153.
  • 5Cheney E W. Introduction to Approximation Theory[M].New York:McGraw-Hill,1966.
  • 6Peng Z Y,Hu X Y. The reflexive and anti-reflexive solutions of the matrix equation AX = B[J].Linear Algebra and Its Applications,2003.147-155.
  • 7Mitra S K. Fixed rank solutions of linear matrix equations[J].SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A,1972.387-392.
  • 8Uhlig F. On the matrix equation AX =B with applications to the generators of controllability matrix[J].Linear Algebra and Its Applications,1987.203-209.
  • 9Xiao Q F,Hu X Y,Zhang L. The symmetric minimal rank solution of the matrix equation AX =B and the optimal approximation[J].Electronic Journal of Linear Algebra,2009.264-273.
  • 10Gross J. Nonnegtive-definite and positive-definite solution to the matrix equation AXA?=B-revisited[J].Linear Algebra and Its Applications,2000.123-129.

二级参考文献11

共引文献108

同被引文献13

  • 1彭向阳,张磊,胡锡炎.矩阵方程A^HXA=B的反Hermitian反自反解及其最佳逼近[J].曲阜师范大学学报(自然科学版),2005,31(1):1-6. 被引量:2
  • 2王艾红.矩阵方程A^HXA=B的反自反解及其最佳逼近[J].长沙大学学报,2005,19(5):5-9. 被引量:1
  • 3王明辉,魏木生,姜同松.子矩阵约束下矩阵方程AXB=E的极小范数最小二乘对称解[J].计算数学,2007,29(2):147-154. 被引量:11
  • 4KHATRI C, MITRA S. Hermitian and nonnegative definite solutions of linear matrix equations[J]. Siam J Appl Math, 1976,31: 579-585.
  • 5LIU X. Comments on "The common Re-nnd and Re-pd solutions to the matrix equations AX= C and XB=D " [J]. Appl Math Comput, 2014, 236: 663-668.
  • 6WU L. The re-positive defininte solutions to the matrix inverse problem AX = B [J]. Linear Algebra Appl, 1992,174:145-151.
  • 7ZHANG J, ZHOU S, HU X. The (P,Q) generalized reflexive and anti-reflexive solutions of the matrix equation AX=B [J]. Appl Math Comput, 2009, 209: 254-258.
  • 8SHMUEL FRIEDLAND, ANATOLI TOROKHTI. Generalized Rank-Constrained Matrix Approximations[J]. SIAM Journal on Analysis and Applications,2006,29(2):656 -659.
  • 9WANG H X. The Minimal Rank of A-BX with Respect to Hermitian MatrixEJ]. Applied Mathematics and Computa- tion,2014,233:55 - 61.
  • 10BYDDER M. Solution of a Complex Least Squares Problem with Constrained Phase[J]. Linear Algebra and Its Applica- tions,2010,433:1 719- 1 721.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部