摘要
利用矩阵对的广义奇异值分解,得到了矩阵方程AX=B有自反解的充分必要件,以及有解时,定秩解、最小秩解的一般表达式.另外,给出了自反最小秩解集合中与给定矩阵的最佳逼近解.
By applying the generalized singular value decomposition of matrix pairs, the necessary and sufficient conditions are obtained for the existence of the reflexive solutions of the matrix equation AX = B, and the expression of the fixed and minimal rank solutions is also shown. In addition, for the minimal rank solution set, the expression of the optimal approximation solution to a given matrix is derived.
出处
《纯粹数学与应用数学》
CSCD
2012年第6期719-727,共9页
Pure and Applied Mathematics
基金
国家自然科学基金(10571047)
高校博士学科点专项科研基金(20060532014)
关键词
矩阵方程
自反矩阵
广义奇异值分解
最小秩解
最佳逼近
matrix equation, reflexive matrix, generalized singular value decomposition, minimal rank,optimal approximation