期刊文献+

广义Fermat商中的平方数和立方数 被引量:1

The squares and cubes in generalized Fermat quotients
下载PDF
导出
摘要 设p是奇素数,a和b是适合a>b,gcd(a,b)=1以及pab的正整数.在这些条件下讨论了一类广义Fermat商为完全平方及完全立方问题.利用初等方法以及三项Diophantine方程的最新结果,证明了当p>13时,(ap-1 bp-1)/p不是平方数;当p>7时,(ap-1 bp-1)/p不是奇立方数.对广义Fermat商的方幂问题做出了实质性进展. Let p be an odd prime, and let a, b be positive integers such that a 〉 b, gcd(a, b) = 1 and p' ab. In this paper we discussed the generalized Fermat quotient problems under these conditions. Using the elementary method and some recent results on ternary Diophantine equations. Proved that if p 〉 13, then (ap-1 - bV-1)/p is not a square, and if p 〉 71 then it is not an odd cube. It has made some progress for the generalized Fermat quotient problems.
作者 李江华
出处 《纯粹数学与应用数学》 CSCD 2012年第6期774-778,共5页 Pure and Applied Mathematics
基金 陕西省自然科学基金(2012K06-43) 陕西省教育厅专项计划基金(12JK0874)
关键词 广义Fermat商 平方数 立方数 三项Diophantine方程 generalized Fermat quotient, square, cube, ternary Diophantine equation
  • 相关文献

参考文献2

二级参考文献19

  • 1Szalay L. On the diophantine equation (2^n - 1)(3^n - 1) = x^2 [J]. Publ. Math. Debrecen, 2000,57(1-2):1-9.
  • 2Hajdu L, Szalay L. On the diophantine equation (2^n - 1)(6^n - 1) = x^2 and (a^n - 1)(a^kn - 1) = x^2 [J]. Period. Math. Hungar., 2000,40(2):141-145.
  • 3Walsh P G. On diophantine equation of the form (x^n - 1)(y^m - 1) = x^2 [J]. Tatra. Mt. Math. Publ., 2000, 20(1):87-89.
  • 4Cohn J H E. The diophantine equation (a^n - 1)(b^n - 1) = x^2 [J]. Period. Math. Hungar., 2002,44(2):169-175.
  • 5Herrmann E, Jarasi I, Peth6 A. Note on J. H. E. Cohn's paper "The diophantine equation xn = Dy^2+1" [J]. Acta Arith., 2004,113(1):69-76.
  • 6Luca F, Walsh P G. The product of like-indexed terms in binary recurrences [J]. J. Number Theory, 2002,96(1):152-173.
  • 7Luca F, Szalay L. Power classes of recurrence sequences [J]. Period. Math. Hungar., 2007,54(2):229-237.
  • 8Le Maohua. A note on the exponential diophantine equation (2^n - 1) (b^n - 1) = x^2 [J]. Publ. Math. Debrecen, 2009,74 (3-4) :401-403.
  • 9Li Lan, Szalay L. On the exponential diophantine equation (a^n - 1)(b^n - 1) = x^2 [J]. Publ. Math. Debrecen, 2010,77(3-4):465-470.
  • 10Ljunggren W. Noen setninger om ubestemte likinvinger av formen (x^n - 1)/(x - 1) = y^q [J]. Norsk Mat. Tidsskr., 1943,25(1):17-20.

共引文献5

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部