期刊文献+

GB_n链的主同余性质

Principal congruences on GB_n chains
下载PDF
导出
摘要 Ockham代数是一个代数(L;∧,∨,f,0,1),其中(L;∧,∨,0,1)是有界分配格,f是L上的偶格自同态.GBn代数是指一个Ockham代数(L;f),它满足条件:(fn(L);f)是布尔代数.它包含常见的布尔代数、de Mogan代数和Stone代数.本文研究了GBn链的代数结构,并给出一个GBn链具有主同余性质的充分与必要条件. An Ockham algebra is an algebra (L; A, V, f, 0, 1) in which (L; A, V, 0, 1) is a bounded distributive lattice and f is a dual lattice endomorphism on L. A GBn-algebra is an Ockham algebra (L; f) with the property that (fn(L); f) is a Boolean algebra, including the Boolean algebra, de Morgan algebra and Stone algebra. In this paper we shall investigate the algebraic structure of GBn-chains, and give the sufficient and necessary condition for those GBn-chains that have the principal congruence property.
作者 孙中举 方捷
出处 《纯粹数学与应用数学》 CSCD 2012年第6期779-791,共13页 Pure and Applied Mathematics
基金 国家自然科学基金(11261021)
关键词 GBn代数 主同余 GBn algebras, principal congruences, chain
  • 相关文献

参考文献10

  • 1Blyth T S,Varlet J C. Ockham Algebras[M].Oxford:Oxford University Press,1994.
  • 2Beazer R. Some p-algebras and double p-algebras having only principal congruences[J].Glasgow Mathematical Journal,1992.157-164.
  • 3沈吓妹,方捷.具有Heyting结构的Ockham代数[J].纯粹数学与应用数学,2010,26(1):138-145. 被引量:4
  • 4Sankappanavar H P. A Course in Universal Algebra[M].New York:springer-verlag,1981.
  • 5Ikikardes S,Sahin R,Cangul I N. Principal congruence subgroups of the Hecke groups and related results[J].Bull Brazilian Math Soc,2009,(04):479-494.
  • 6Blyth T S,Varlet J C. Principal congruences on some lattice-ordered algebras[J].Discrete Mathematics,1990.323-329.
  • 7Fang J,Sun Z J. A subclass of Ockham algebras[J].Acta Mathematica Sinica,2012,(10):2115-2128.
  • 8Berman J. Distributive lattices with an additional unary operation[J].Aequationes Mathematicae,1977.165-171.
  • 9Gr¨atzer G. Lattice Theory[M].New York:W.H.Freeman and Company,1971.
  • 10Jie FANG,Zhong Ju SUN.A Subclass of Ockham Algebras[J].Acta Mathematica Sinica,English Series,2012,28(10):2115-2128. 被引量:1

二级参考文献14

  • 1Blyth T S, Varlet J C. Ockham Algebras[M]. Oxford: Oxford University Press, 1994.
  • 2Balbes R, Dwinger Ph. Distributive Lattices[M]. Missouri: University of Missouri Press, 1974.
  • 3SankappanavarH P. Heyting algebras with dual pseudocomplementation[J]. Pacific J. Math., 1985,117(2):405- 415.
  • 4Blyth T S, Fang Jie, Varlet J C. Ockham Algebra with pseudocomplementation[J]. Comm. Algebra, 1997,25(11):3605-3615.
  • 5Katrinak T. The structure of distributive double p-algebras. Regularity and congruences[J]. Algebra Universalis, 1974,4:195-206.
  • 6Berman, J.: Distributive lattices with an additional unary operation. Aequationes Math., 16, 165 171 (1977).
  • 7Urquhart, A.: Distributive lattices with a dual homomorphic operation. Studia Logica, 38, 201-209 (1979).
  • 8Blyth, T. S., Fang, 3., Varlet, J. C.: Subdirectly irreducible Ockham algebras. In: Contributions to General Algebra, 7, Verlag HSlder-Pichler-Tempsky, Wien, 1991, 37 48.
  • 9Blyth, T. S., Varlet, J. C.: Ockham Algebras, Oxford Universkv Press, Oxford, 1994.
  • 10Fang, J.: Congruences on balanced pseudocomplemented Ockham algebras. Acta Mathematica Siniea, English Series, 25(6), 1031-1040 (2009).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部