摘要
Ockham代数是一个代数(L;∧,∨,f,0,1),其中(L;∧,∨,0,1)是有界分配格,f是L上的偶格自同态.GBn代数是指一个Ockham代数(L;f),它满足条件:(fn(L);f)是布尔代数.它包含常见的布尔代数、de Mogan代数和Stone代数.本文研究了GBn链的代数结构,并给出一个GBn链具有主同余性质的充分与必要条件.
An Ockham algebra is an algebra (L; A, V, f, 0, 1) in which (L; A, V, 0, 1) is a bounded distributive lattice and f is a dual lattice endomorphism on L. A GBn-algebra is an Ockham algebra (L; f) with the property that (fn(L); f) is a Boolean algebra, including the Boolean algebra, de Morgan algebra and Stone algebra. In this paper we shall investigate the algebraic structure of GBn-chains, and give the sufficient and necessary condition for those GBn-chains that have the principal congruence property.
出处
《纯粹数学与应用数学》
CSCD
2012年第6期779-791,共13页
Pure and Applied Mathematics
基金
国家自然科学基金(11261021)
关键词
GBn代数
主同余
链
GBn algebras, principal congruences, chain