期刊文献+

关于F.Smarandache因子分拆问题 被引量:1

On the problem of the F.Smarandache factor
下载PDF
导出
摘要 对于F.Smarandache因子分拆,利用初等及组合方法研究一些特殊整数的所有不同分拆个数的计算问题,并给出一个确切的计算公式,从而解决了Amarnath Murthy及Charles Ash-bacher提出的2个猜想! For any positive integer n〉 1, if n= dl dl… dk, where di (i = 1,2 ,…, k) is the divisor of n, then dldz…dk are a F. Smarandache factor partitions of n. Using the elementary and combinational methods, the computational problem of F(1 # n) for some special positive integers is studied,and an exact compu- tational formula is given. Finally, two conjectures proposed by Amarnath Murthy and Charles Ashbacher in reference are solved.
作者 刘宝利
出处 《纺织高校基础科学学报》 CAS 2012年第4期407-409,共3页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(11071194) 陕西省教育厅科研专项基金资助项目(11JK0487)
关键词 F Smarandache因子分拆 猜想 初等方法 组合方法 恒等式 F. Smarandache factor partitions conjecture elementary method combinational method iden-tity
  • 相关文献

参考文献9

  • 1AMARNATH Murthy,CHARLES Ashbacher. Generalized partitions and new ideas on number theory and Smarandache sequences[M].Phoenix:Hexis,2005.56-57.
  • 2张文鹏;李海龙.初等教论[M]西安:陕西师范大学出版社,2008.
  • 3TOM M Apostol. Introduction to analytic number theory[M].New York:springer-verlag,1976.
  • 4刘燕妮;李玲;刘宝利.Smarandache未解决问题及其新进展[M],Michigan:High Amelican Press,2008.
  • 5SMARANDACHE F. Only problems,not solutions[M].Chicago:Xiquan Publishing House,1993.
  • 6KENICHIRO Kashihara. Comments and topics on Smarandache notions and problems[M].Gelndale:Erhus University Press,1996.
  • 7朱敏慧.Smarandache函数的混合均值(英文)[J].纺织高校基础科学学报,2009,22(3):295-298. 被引量:3
  • 8韩彬玲.关于三角数的Smarandache连续数列[J].纺织高校基础科学学报,2012,25(1):71-74. 被引量:3
  • 9苟素.Smarandache kn数字数列及其一类均值性质[J].纺织高校基础科学学报,2011,24(2):250-252. 被引量:5

二级参考文献20

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2杨倩丽,王涛,李海龙.Smarandache双阶乘函数性质的研究[J].西安工程科技学院学报,2006,20(4):494-496. 被引量:4
  • 3SMARANDACHE F. Only problem, not solution[ M]. Chicago: Xiquan Publishing House, 1993.
  • 4LI Hailong, ZHAO Xiapeng. On the smarandache function and the κ-th roots of a positive integer[ C ]//Research On Smarandache Problems in Number Theory. Hexis,2004:120-121.
  • 5TOM M Apostol. Introduction to analytic number theory [ M ]. New York: Springer-Verlag, 1976:77.
  • 6SMARANDACHE F.Only problems,not solutions[M].Chicago:Xiquan Publishing House,1993:15.
  • 7SMARANDACHE F.Sequences of numbers involved in unsolved problems[M].Phoenix:Hexis,2006:3.
  • 8GUPTA S S.Smarandache sequence of triangular numbers[J].Smarandache Notions Journal,2004,14:366-368.
  • 9APOSTOL T M.Introduction to analytic number theory[M].New York:Springer-Verlag,1976.
  • 10SHAPIRO H N.Introduction to the theory of numbers[M].New York:John Wiley and Sons,1983.

共引文献7

同被引文献6

  • 1SMARANDACHE F. Only Problems, Not Solutions[M]. Chicago: Xiquan Publishing House, 1993.
  • 2AMARNATH M, CHARLES A. Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences [M]. Phoenix: Hexis, 2005:79.
  • 3WIEMANN M, COOPER C. Divisibility of an F-L Type Convolution. Applications of Fibonacci Numbers[M]. Dor dreeht: Kluwer Acad Publ, 2004: 267-287.
  • 4MA Rong, ZHANG Wen-peng. Several Identities Involving the Fibonacci Numbers and Lucas Numbers [J]. The Fi- bonacci Quarterly, 2007, 131(1): 164-170.
  • 5刘宝利.关于Smarandache结构数列[J].内蒙古师范大学学报(自然科学汉文版),2012,41(3):241-243. 被引量:1
  • 6郇乐.Smarandache函数及其相关函数的性质[J].西南大学学报(自然科学版),2013,35(4):67-70. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部