摘要
针对细菌觅食算法收敛速度慢,存储量大,不能解决高维问题的等缺点,给出了一种自适应的模拟细菌觅食算法.该算法.通过自适应调整细菌的搜索步长,加强了算法在优化初期的全局搜索能力.最后,用5个典型测试函数的实验结果,并与原始细菌觅食算法(BFA)及同样采用了参数调整策略自适应差分进化算法(ADE)和带压缩因子的粒子群算法(YSPSO)进行比较,说明了本文算法的有效性,且其优化能力优于BFA,ADE和YSPSO算法.
To overcome the slow convergence, large store memory capacity and unsuitable to solve the high-dimensi-onal problems of the bacterial foraging algorithm, a novel algorithm was proposed based on the idea of bacterial foraging optimization. A self-adaptive step length is introduced in bacteria to sti ~ngthen the global search ability at the early stage of the proposed algorithm. Finally,the effective- ness and super performance of the proposed algorithm is proved by numerical results of five typical func- tions and comparing the original bacterial foraging algorithm (BFA),the self-adaptive differential evolu- tion (ADE) and the particle swarm optimization with a compression factor (YSPSO).
出处
《纺织高校基础科学学报》
CAS
2012年第4期502-506,共5页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(10902062)
中央高校基本科研业务费专项基金资助(GK201001002)
关键词
细菌觅食算法
自适应
收敛速度
bacterial foraging algorithm adaptive convergence