期刊文献+

一种自适应的模拟细菌觅食算法 被引量:2

An adaptive simulation of bacterial foraging algorithm
下载PDF
导出
摘要 针对细菌觅食算法收敛速度慢,存储量大,不能解决高维问题的等缺点,给出了一种自适应的模拟细菌觅食算法.该算法.通过自适应调整细菌的搜索步长,加强了算法在优化初期的全局搜索能力.最后,用5个典型测试函数的实验结果,并与原始细菌觅食算法(BFA)及同样采用了参数调整策略自适应差分进化算法(ADE)和带压缩因子的粒子群算法(YSPSO)进行比较,说明了本文算法的有效性,且其优化能力优于BFA,ADE和YSPSO算法. To overcome the slow convergence, large store memory capacity and unsuitable to solve the high-dimensi-onal problems of the bacterial foraging algorithm, a novel algorithm was proposed based on the idea of bacterial foraging optimization. A self-adaptive step length is introduced in bacteria to sti ~ngthen the global search ability at the early stage of the proposed algorithm. Finally,the effective- ness and super performance of the proposed algorithm is proved by numerical results of five typical func- tions and comparing the original bacterial foraging algorithm (BFA),the self-adaptive differential evolu- tion (ADE) and the particle swarm optimization with a compression factor (YSPSO).
出处 《纺织高校基础科学学报》 CAS 2012年第4期502-506,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10902062) 中央高校基本科研业务费专项基金资助(GK201001002)
关键词 细菌觅食算法 自适应 收敛速度 bacterial foraging algorithm adaptive convergence
  • 相关文献

参考文献13

  • 1KEVIN M P. Biomimicry of bacterial foraging for distributed opti-mization and control[J].IEEE Control Systems Magazine,2002.52-67.
  • 2DASGUPTA A,DASGUPUTA S,DAS S. A synergy of differential evolution and bacterial foraging optimization.for global optimization[J].Neural Network Word,2007,(06):607-626.
  • 3KIM D H,ABRAHAM A,CHO J H. A hybrid genetic algorithm and bacterial foraging approach[J].Information Sciences,2007,(18):3918-3937.
  • 4刘芹.差分进化细菌觅食算法求解公交车调度问题[J].交通运输系统工程与信息,2012,12(2):156-161. 被引量:9
  • 5马苗,梁建慧,郭敏.随机预言模型下可证适应性安全的门限FFS签名方案[J].西安电子科技大学学报,2011,38(6):152-158. 被引量:13
  • 6任爱红.结合粒子群算法优化归一割的图像阈值分割方法[J].西安工程大学学报,2012,26(3):337-341. 被引量:2
  • 7BISWAS A,DASGUPTA S,DAS S. Synergy of PSO and bacterial foraging op-timization:A comparative study on numerical benchmarks[A].Salamanca,2007.255-263.
  • 8LIU Y,PASSINO K M,POLYCARPOU M. Stability analysis of m-dimensiona asynchronous swarms with a fixed communication topology[J].IEEE Transactions on Automatic Control,2003,(01):76-95.
  • 9DATTA T,MISRA I S,MANGARAJ B B. Improved adaptive bacteria foraging algorithm in optimization ofantenna array for faster convergence[J].Progress in Electromagnetics Research C,2008,(01):143-157.
  • 10CHEN H;ZHU Y;HU K.Self-adaptation in bacterial foraging optimization algorithm[A]福建厦门,20081026-1031.

二级参考文献44

  • 1陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:57
  • 2范玉军,王冬冬,孙明明.改进的人工鱼群算法[J].重庆师范大学学报(自然科学版),2007,24(3):23-26. 被引量:43
  • 3Wang Xingyuan, Li Fanping, Wang Shuguo. Fractal Image Compression Based on Spatial Correlation and Hybrid Genetic Algorithm[ J]. Journal of Visual Communication and Image Represenlation, 2009, 20(8): 505-510.
  • 4Cerello P, Cheran S C, Bagnasco S, et al. 3-D Object Segmentation Using Ant Colonies [ J]. Pattern Recognition. 2010, 43 (4) : 1476-1490.
  • 5Raghavendra R, Dorizzi B, Rao A, et al. Particle Swarm Optimization Based Fusion of Near Infrared and k isible Images for Improved Faee Verification[ J]. Pattern Recognition, 2011, 44(2) : 401-411.
  • 6Du Feng, Shi Wenkang, Chen Liangzhou, et al. Infrared Image Segmentation with 2-D Maximum Entropy Method Based on Particle Swarm Optimization[ J]. Pattern Recognition Letters, 2005, 26(5): 597-603.
  • 7Karaboga D. An Idea Based on Bee Swarm for Numerical Optimization [R/OL]. [2011-04-28]. http://mf, crciyes, edu. tr/ abc/pub/tr06-2005, pdf.
  • 8Passino K M. Biomimicry of Bacterial Foraging for Distributed Optimization and Control [ J]. IEEE Control System Magazine, 2002(6) : 52-67.
  • 9Ceder A, Golany B, Tal O. Creating bus timetables with maximal synchronization [ J ]. Transportation Research, 2001,12 : 243-259.
  • 10Andre de Palma, Robin Lindsey. Optimal timetables for public transportation [ J ]. Transportation Research PartB ,2001, 35:789-813.

共引文献24

同被引文献19

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部