期刊文献+

考虑负面评价的个性化推荐算法研究 被引量:1

Personalized Recommendation Algorithm by Considering the Negative Ratings
下载PDF
导出
摘要 利用用户的负面评价信息,本文提出了一种新的推荐算法结构。算法首先将用户选择过的产品分为喜欢和不喜欢两类。其次利用用户的喜好信息构建推荐列表,同时利用负面评价信息构建厌恶列表。最后将推荐列表中的厌恶产品进行过滤,精炼推荐列表。Movielens数据上的实验结果显示,当采用90%数据作为训练集时,推荐列表的排序打分可以达到已知算法的最大值0.077,推荐列表的长度为10时,推荐列表的多样性和推荐新信息的能力相对不考虑负面信息的算法分别提高了16.08%和28.83%。同时,算法可以识别出根据喜好信息构建的推荐列表中19.15%的产品是用户不喜欢的。新算法结构不仅是目前已知的准确度和多样性都最高的算法,而且可以极大地降低系统的计算复杂度,节约存储空间。该工作开辟了利用用户负面评价提高推荐效果的新思路。 By considering users' negative ratings,this paper introduces a new recommendation algorithm architec- ture. According to the rating scores, the algorithm divides all the objects rated by users into two categories, liked one and disliked one. Both two sets are used to obtain users' recommended lists and disliked list by the mass- diffusion-based algorithm. Then the lists disliked are used to filter out the disliked objects in the recommended list. The numerical results on one benchmark dataset show when the training set is set as 90% percent of data, the average ranking score of the recommended list could be improved to O. 077. Compared with the standard mass-diffusion-based algorithm, when the length of recommended list is 10, the diversity and predicting new in- formation capability could be respectively improved by 16.08% and 28.83%. In addition, the algorithm could i- dentify 19.15% disliked objects in the recommended list. The numerical results indicate that the negative ratings are crucial for improving the effectiveness of the recommendation algorithm.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2012年第6期17-22,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目(10905052 70901010 71071098) 上海市科研创新基金(11ZZ135 11YZ110) 上海市智能信息处理重点实验室开放基金(IIPL-2010-006) 上海市系统分析与集成重点学科(S30501) 上海市青年科技启明星计划(A类)(11QA1404500)
关键词 推荐算法 用户兴趣点 物质扩散 二部分网络 recommendation algorithm user tastes mass diffusion bipartite network
  • 相关文献

参考文献16

  • 1Belkin N J. Helping people find what they don ’t know[J].Communications of the ACM,2000.58-61.
  • 2Resnick P,Varian H R. Recommender systems[J].Communications of the ACM,1997.56-58.
  • 3刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 4Herlocker J L,Konstan J A,Terveen K. Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004.5-53.
  • 5Goldberg D,Nichols D,Oki B M. Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992.61-70.
  • 6Liu J G,Wang B H,Guo Q. Improved collaborative filtering algorithm via information transformation[J].International Journal of Modern Physics C,2009.285-293.
  • 7Balabanovic M,Shoham Y. Fab: content-based, collaborative recommendation[J].Communications of the ACM,1997.66-72.
  • 8Pazzani M J,Billsus D. Content-based recommendation systems[J].Lecture Notes in Computer Science,2007.325-341.
  • 9Zhang Y C,Blattner M,Yu Y K. Heat conduction process on community networks as a recommendation model[J].Physical Review Letters,2007.154301.
  • 10Zhang Y C,Medo M,Ren J. Recommendation model based on opinion diffusion[J].Europhysics Letters,2008.68003.

二级参考文献96

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献434

同被引文献14

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部