期刊文献+

水热时间对Co掺杂ZnO微结构与磁性的影响 被引量:1

Influence of Hydrothermal Time on the Microstructure and Magnetism of Co-doped ZnO
下载PDF
导出
摘要 采用水热法制备了Co掺杂ZnO粉晶,研究了水热时间t(t=2,3,6 h)对其微结构、形貌和磁性的影响。结果表明:随水热时间增加,Co掺杂ZnO晶胞参数和微应变减小,c/a值增加,均具有六方柱形貌。水热时间为2 h时显示弱铁磁性,合成时间为3 h时具有最强的铁磁特性,六方纳米柱形状明显变长,结晶性能最好。水热时间为6 h时显示为顺磁性,六方纳米柱形貌有"融化"趋势。相对于未掺杂ZnO,Co掺杂有利于单一ZnO相的形成。 Co-doped ZnO powder crystals have been synthesized by hydrothermal method. The influence of hy- drothermal time t(t=2,3,6h) on the microstructure, morphology and magnetism of these specimen has been stud- ied. It was found that the lattice constant and microstraln decrease while the ratio increases for Co-doped ZnO with lengthening of hydrothermal time, which all has hexagonal rod morphology. The synthesized Co-doped ZnO prepared for 2h shows weak ferromagnetic orders and the room temperature ferromagnetic property has been obviously enhanced when it hydrogenated for 3 hours. Moreover it has the longest hexagonal rods and the optimist crystallization. While Co-doped ZnO shows paramagnetism and the hexagonal rods have the trends of melt-out when it hydrogenated for 6 hours. Compared with the non-doped ZnO, Co-doping has been helpful to the formation of single phase ZnO with wuttzite structure.
出处 《台州学院学报》 2012年第6期1-6,共6页 Journal of Taizhou University
基金 台州学院培育基金项目资助
关键词 水热法 钴掺杂氧化锌 微结构 稀磁半导体 Hydrothermal method Co-doped ZnO Microstructure Diluted magnetic semiconductor
  • 相关文献

参考文献13

二级参考文献90

共引文献70

同被引文献30

  • 1赵文刚,马忠权,裴广庆,杨文继,徐飞,王德明,赵占霞.ZnO纳米线的水热法生长[J].人工晶体学报,2007,36(3):634-637. 被引量:7
  • 2Ryu Y R,Zhu S,Budai J D,et al. Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition[J]. J Appl Phys, 2000,88(1) : 201-204.
  • 3Guo M Diao P,Cai S M. Hydrothermal growth of well-aligned ZnO nanorod arrays .. Dependence of morphology and alignment ordering upon preparingconditions[J]. Journal of Solid State Chemistry, 2005,178 (6) : 1 864-1 873.
  • 4Huang M H,Mao S,Feiek H,et al. Room-temperature ultraviolet nanowire nanolasersr[J]. Science,2001,292(5623) :1897-1899.
  • 5Wu J J, Liu S C,Wu C T, et al. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes[J]. Appl. Phys. Lett. , 2002,81(7) : 1 312-1 314.
  • 6Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions[J]. Advanced Materials, 2003,15(5) : 464- 466.
  • 7Keis K, Vayssieres L, Lindquist S E, et al. Nanostructured ZnO electrodes for photovoltaic applications[-JT. Nanostructured Materials, 1999,12(1) :487-490.
  • 8Govender K,Boyle D S, Kenway P B,et al. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution[J]. J Mater Chem, 2004,14 : 2 575-2 591.
  • 9S Yamabi, H Imai. Growth conditions for wurtzite zinc oxide films in aqueous solutions[J]. J Mater Chem,2002,12:3 773 - 3 778.
  • 10Greene L E,Law M,Goldberger J, et al. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays[J]. Angew Chem Int Ed,2003,42(26):3 031 - 3 034.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部